Supplementary information

Materials and Methods.

Sodium Bisulfite sequencing.
DNA was extracted from the different types of samples using the Qiagen DNA prep kit. For bisulfite modification, 1 μg of genomic DNA was denatured for 30 minutes at 37°C in NaOH 0.4N and incubated overnight in a solution of 3M Sodium bisulfite pH5 and 10mM Hydroquinone using a previously described protocol 1. Converted DNA was then purified using the Wizard DNA CleanUp kit (Promega) following manufacturer’s recommendation and recovered after ethanol precipitation for 5 hours at -20°C. After centrifugation, the DNA pellet was resuspended in 40L of water and stored at -20°C until use. Converted DNA was amplified using primer sets designed with the MethPrimer software 2 avoiding the presence of CpGs in the primer sequence in order to amplify both methylated and unmethylated DNA with the same efficiency (Table e1). For Ion Torrent sequencing, amplicons were modified by addition at the 5’ end of barcode/adaptors sequences and at the 3’ end of a Tag for sequence amplification. Amplification was carried out using the High Fidelity Taq polymerase (Roche) according to manufacturer’s instructions. After initial denaturation at 94C for two minutes, amplification was done after 10 cycles at 94C for 20 seconds, 56C for 30 seconds, 72C for one minute and 25 cycles at 94°C for 20 seconds, 54°C for 30 seconds, and an amplification step of 4 minutes and 30 seconds for the first cycle and an implement of 10 seconds at each subsequent cycle. At the end of the program, a final extension step at 72C for 7 minutes was done. For primers described in 3, nested PCR was performed as described, with 10% of the first amplification used in the second amplification step.
PCR products were cleaned up and purified using the AMPure XP kit following manufacturer’s instruction and recommendation for NGS applications (Beckman Coulters). After purification, DNA was quantified using the Qubit® dsDNA High Sensitivity Assay Kit (Thermofisher). An equimolar mix of all regions and samples/barcodes is done. DNA high-throughput sequencing was performed using Ion PGM Sequencing 400 kit (Life Technologies) reagents. Ion Sphere Particles (ISP) were loaded onto an Ion 316R sequencing chip (Life Technologies) and DNA sequencing was performed with the Ion PGM instrument at 650 run flows. Raw data were processed using the Ion Torrent platform-specific pipeline software Torrent Suite v5.0.4. Results are split in different files to isolate data assigned to each barcode using the Ion Torrent server. Sequences were identified by the presence of a 17-base pair index at the beginning or at the end of the sequence (table e-1). Trimming of barcodes is performed using the fastx_barcode_splitter.pl software and fastq_to_fasta software (Barcode Splitter & FASTX_ToolKit, 0.0.13, https://github.com/agordon/fastx_toolkit) to prepare data for the BiQ Analyser HiMod software (http://biq-analyzer.bioinf.mpi-inf.mpg.de)4. Sense and antisense sequences were assembled in a single sequence and bam file were converted to fastq file. After trimming, data are analyzed using the Bamtools software (BamTools 2.4.0, https://github.com/pezmaster31/bamtools 5). After processing, data were exported in “tab” separated value or “tsv file” into the R software (version 3.4.2). The first column contains the Ion Torrent ID. The last two columns correspond to the name of the region amplified and sample number. Others columns correspond to the methylation status of each CpG. Aligned sequences with a conversion rate >90% and a recovery rate >50% were further analyzed. BiQ Analyzer HiMod converts sequencing data by using « 1 » for a methylated CG, « 0 » for unmethylated and « x » in case of misalignment. The percentage of coverage is calculated as the ratio between the numbers of « x » divided by the total number of letters per sequence. Three methylation score are calculated, (i) the CpG methylation score corresponds to the percentage of methylation for each CpG in the reference sequence is calculated as the ratio of number of methylated CpGs on the number of CpGs aligned to the reference sequence, (ii) the sequence methylation score, corresponds to the average methylation level of each sequence calculated as the ratio of methylated CpG of all aligned CpG for a given sequence and (iii) the global methylation score corresponds to the global level of methylation for each biological sample in a given region calculated as the ratio of methylated CpG with the number of aligned CpG for all sequences and CpG positions for a given biological sample. Graphics representations were performed using barplot, boxplot and hist functions.  

Statistical analysis.
Statistical analyses were done with R (version 3.4.2) and RStudio softwares, dplyr library and ComplexHeatmap library from Bioconductor (version 3.6). DNA methylation levels were compared using a Wilcoxon non-parametric test (wilcox.test function). The significance threshold (=0.05) was corrected for multiple comparisons using the Bonferroni method for False Discovery Rate (FDR) determination. Only values showing a significant correlation with a p-value < 0.05 are presented. Heatmaps and Manhattan distance calculation were used to simultaneously visualize clusters of samples and global methylation of the different sequences. Clusters of CpG by CpG differentially methylated were determined using an Euclidean distance calculation. For each sample, we used the Mixtools version 1.1.0 package in R that estimates the sampling distribution using a random sampling method and confidence intervals calculation. Bootstrap was used to determine a confidence interval for the ratio of methylated CG divided by the number of CG analyzed for each sample by constructing an interval centered at a point estimate with a margin of error equal to twice the standard error.

In vitro DNA methylation.
For validation of the different primers to amplify methylated and unmethylated DNA with the same efficiency, 2 µg of a plasmid containing one repetition of the D4Z4 macrosatellite was methylated in vitro using the M.SssI CpG methylase (NEB) in a final of 50µL containing 5µL of enzyme buffer, 0.5µL of S-Adenosyl Methionine (SAM) (NEB). To ensure a good efficiency of the M.SssI enzyme, the plasmid was purified using the Ampure XP kit (Beckman Coulters) and submitted to a second step of methylation using the same protocol.




Table e-1: Sequence of the primers used for Sodium bisulfite PCR.
D4Z4 5P, MID and 3P were described in 6; DR1 primers were described in 7; 4qA-Ext and 4qA-Int were described in 3.
	Sequence
	Name
	Primers
	Temperature
	Size

	
	
	
	
	

	D4Z4
	5P
	AAATATGTAGGGAAGGGTGTAAGTT
GGAGAGAGGGTTTGGTATATTTAAG
	56°C
	275

	D4Z4
	MID
	ATTCATGAAGGGGTGGAGCCT
CAGAGAACGGCTGGCCCAGGCCAT
	56°C
	353

	D4Z4
	3P
	GTTTTGTTGGAGGAGTTTTAGGA
TGGGATTTTTGTTTTTTAGGTTTAG
	56°C
	171

	D4Z4
	DR1
	GAAGGTAGGGAGGAAAAG
ACTCAACCTAAAAATATACAATCT
	56°C
	254

	D4Z4
	4qA-Ext
	GTTTTGTTGGAGGAGTTTTAGGA
AACATTCAACCAAAATTTCACRAAA
	54°C
	770

	D4Z4
	4qA-Int
	GTTTTGTTGGAGGAGTTTTAGGA
AACAAAAATATACTTTTAACCRCCAAAAA
	54°C
	596

	RS447
	5P
	TGTGATTTTTTTTTGAATTGAG
CTCACCTCCCAAATAAAATAAA
	56°C
	200

	LINE
	5UTR
	GTAAGGGGTTAGGGAGTTTTTT
TTATCTATACCCTACCCCCAAA
	56°C
	366

	ALU
	-
	GGATTATTTGAGGTTAGGAGAT
TCCCRAATAACTAAAACTACAA
	56°C
	146

	Telomere
	TAR1
	GGAGTAGAGTTTTTTTTAGGTTAGATT
AAACAAACAATACCCCCAAC
	56°C
	150




Table e-2: Blood samples (PBL) from healthy donors, FSHD1 and FSHD2 patients.
Samples for which distribution is presented in supplementary figure 6 are highlighted in gray. Most cases have been characterized by Molecular combing. Samples characterized by Southern blotting or for whom only the size of the shortened allele is available are indicated by *.

	
	Diagnosis
	Genotype
	SMCHD1 status
	Age
	Gender

	18248
	Control
	>10
95 RU
	No mutation
	53
	Male

	18304
	Control
	>10
120RU
	No mutation
	59
	Female

	18488
	Control
	>10
80RU
	No mutation
	52
	Male

	18521
	Control
	>10
70RU
	No mutation
	52
	Female

	18553
	Control
	>10
120RU
	No mutation
	46
	Female

	21383
	Control
	>10
	No mutation
	65
	Female

	N1*
	Control
	>10
	No mutation
	35
	-

	N2*
	Control
	>10
	No mutation
	38
	-

	N4*
	Control
	>10
	No mutation
	59
	-

	15165
	Control
	>10
92RU
	No mutation
	37
	Female

	11016
	FSHD1
	4qA 2-3RU
4qA 19RU
10qA 12RU
10qA 14RU
	No mutation
	37
	Female

	FJR
	FSHD1
	4qA 5-6RU
4qA 10RU
10qA 24 RU
10qA 19RU
	No mutation
	55
	Male

	14557
	FSHD1
	5-6RU
	No mutation
	29
	Male

	12759
	FSHD1
	6RU
4qA 6RU
4qA 34RU
10qA 13RU
10qB 18RU
	No mutation
	51
	Female

	BOR.JU
	FSHD1
	4qA 5RU
4qB 13RU
10qA 19RU
10qA >140kb
	No mutation
	33
	Female

	11104
	FSHD1
	9RU
	No mutation
	32
	Male

	17743
	FSHD1
	4qA 6RU
4qA 34 RU
10qA 13RU
10qB 18RU
	No mutation
	80
	Male

	14383
	FSHD1
	4qA 9RU
4qA 9RU
10qA 9RU
10qA 32RU
	No mutation
	26
	Male

	L0400*
	FSHD1
	7RU
	No mutation
	44
	Female 

	L 0700*
	FSHD1
	9RU
	No mutation
	71
	-

	LA0100*
	FSHD1
	7RU
	No mutation
	55
	Female 

	LA0200*
	FSHD1
	8RU
	No mutation
	56
	Female 

	16214*
	FSHD1
	6RU
	No mutation
	25
	Female

	15432
	FSHD1
	4qA 7RU
4qA 43RU
10qB 17RU
10qA 44RU
	No mutation
	33
	Male

	15431
	FSHD1
	4qA 7RU
4qA 43RU
10qA 15RU
10qA 44RU
	No mutation
	28
	Female

	M0400
	FSHD1
	 4qA 7RU
4qA 43RU
10qB 15RU
10qA 44RU
	No mutation
	74
	Male

	M1200
	FSHD1
	9RU
	No mutation
	64
	Female

	M1303*
	FSHD1
	7RU
	No mutation
	49
	Female

	M2000
	FSHD1
	4qA 7RU
4qB 28RU
10qA 12RU
10qA 24RU
	No mutation
	66
	Female

	M2100
	FSHD1
	4qA 7RU
4qA 21RU
10qA 12RU
10qA17RU
	No mutation
	45
	Female

	M2300
	FSHD1
	7RU
	No mutation
	73
	Female

	16881
	FSHD1
	8-9RU
	No mutation
	58
	Male

	16802
	FSHD1
	4qA 9RU
4qA 30RU
10qA 7RU
10qA 44RU
	No mutation
	23
	Female

	S0100*
	FSHD1
	7RU
	No mutation
	63
	Male

	T1100*
	FSHD1
	6RU
	No mutation
	65
	Female

	14173
	FSHD1
	4qA 2-3RU
4qA 19RU
10qA 12RU
10qA 14RU
	No mutation
	32
	Female

	15165
	FSHD1
	4qA 9RU
4qB 12RU
10qA 21 RU
10qA 21RU
	No mutation
	55
	Male

	18161
	FSHD1
	7RU
	No mutation
	30
	Male

	14589
	FSHD2
	>10
4qA 11RU; 4qB 21RU
10qA 11RU; 10qA 35RU 
	c.4151G>T; p.Gly1384Val
	51
	Male

	14586
	FSHD2
	>10
4qA 13RU
4qA 13RU
10qA 14RU
10qA 37RU
	c.578A>C; p.Glu193Pro
	67
	Male

	11440
	FSHD2
	>10
4qA 11RU
4qA 33RU
10qA 14RU
10qA 17RU
	c.2338+4A>G; p.S754*
	37
	Male

	18267
	FSHD2
	>10
4qA 15RU
4qA 33RU
10qA 14RU
10qA 37RU
	c.1436G>A ; pR479Q
	68
	Male

	17073
	FSHD2
	>10
4qA 11RU
4qA 23RU
10qA 18RU
10qA 25RU
	c.1580 C>T ; p.T527M
	24
	Female

	10480
	FSHD2
	>10
4qA 15RU
4qA 48RU
10qA 9RU
10qA 30RU
	c.2260+6T>C
	53
	Female

	11491
	FSHD2
	>10
4qA 22RU
4qA 22RU
10qA 6RU
10qA 25RU
	c.5476+3 A>G; r.5477_5547del; p.V1826Gfs*19
	66
	Female

	15166
	FSHD2
	>10
4qA 11RU
4qB 20RU
10qA 25RU
10qA 21RU
	r.4614_4615insTATAATA; p.A1539Yfs*4
	67
	Female

	17143
	FSHD2
	>10
4qA 14RU
4qA 14RU
10qA 7RU
10qA 24 RU
	c.2328delT; P776L*
	53
	Female

	14581
	FSHD2
	>10
4qA 22RU
4qA 35RU
10qA 11RU
10qA 4RU
	c.4892A>T;  D1631V
	51
	Male



Table e-3: Blood samples (PBL) from mosaic FSHD1 patients. The genotype and percentage of mosaicism is indicated for each patient. The short allele is indicated in bold. 
	Patient ID
	Frequency of contracted allele
	Genotype
	Year of birth
	Gender

	16111
	31%
	4qA 6RU-4qA 20RU-4qB 23RU
10qA 9 RU-10qA 26 RU
	1953
	Female

	17706
	10%
	4qA 2RU-4qA 11RU-4qB 22RU
10qA 38 RU-10qA 14 RU
	1962
	Female

	19179
	13%
	4qA 1RU-4qA 39RU-4qB 46RU
10qA 17 RU-10qA 35 RU
	1977
	Male

	19180
	28%
	4qA 3RU-4qA 21RU-4qB 14RU
10qA 6 RU-10qA 35 RU
	1965
	Male

	19181
	29%
	4qA 3RU-4qA 48RU-4qB 19RU
10qA 8 RU-10qA 12 RU
	1958
	Male

	19182
	34%
	4qA 3RU-4qA 32RU-4qB 19RU
10qA 18 RU-10qA 18 RU
	1993
	Male

	19183
	14%
	4qA 4RU-4qA 28RU-4qA 33RU
10qA 18 RU-10qA 21 RU
	1974
	Male

	19184
	23%
	4qA 2RU-4qA 27RU-4qA 41RU
10qA 28 RU-10qA 28 RU
	1974
	Male

	19186
	21%
	4qA 3RU-4qA 32RU-4qB 14RU
10qA 19 RU-10qA 23 RU
	1966
	Male

	19187
	45%
	4qA 2RU-4qA 22RU-4qA 32RU
10qA 15 RU-10qA 25 RU
	1958
	Female

	19271
	35%
	4qA 3RU-4qA 20RU-4qA 29RU
10qA 22 RU-10qA 23 RU
	1965
	Female

	19272
	45%
	4qA 4RU-4qA 31RU-4qA 34RU
10qA 22 RU-10qA 16 RU
	1964
	Female

	19274
	52%
	4qA 3RU-4qA 20RU-4qB 20RU
10qA 5 RU-10qA 24 RU
	1986
	Male

	19275
	42%
	4qA 11 RU-4qA28 RU-4qB 27 RU
10qA 27 RU-10qA 16 RU
	N/A
	Male

	19276
	35%
	4qA 6RU-4qA 47RU-4qB 16RU
10qA 14 RU-10qA 27 RU
	N/A
	Male

	19279
	42%
	4qA 2RU-4qA 12RU-4qA 44RU
10qA 12 RU-10qA 32 RU
	1978
	Female





Legends to the supplementary figures.
Figure e-1. Workflow for analysis of DNA methylation level after deep-sequencing. 
A. Raw data were processed using the Ion Torrent platform-specific pipeline software Torrent Suite v5.0.4. After trimming of each barcode using the fastx_barcode_splitter.pl software and fastq_to_fasta software, data are analyzed using a the BamTools 2.4.0 software 5 to convert bam file to fastq file . Data are then processed using the BiQ Analyser HiMod software and R for statistical analysis. For each sequence, the percentage of recovery and percentage of conversion are calculated. B. Only sequences with a percentage of recovery > 50% and percentage of conversion >90% are kept for further analysis. Three methylation scores are calculated. The CpG methylation score corresponds to the percentage of methylation for each CpG in the reference sequence calculated as the ratio of number of methylated CpGs on the number of CpGs aligned to the reference sequence. The sequence methylation score corresponds to the average methylation level of each sequence, calculated as the ratio of methylated CpG of all aligned CpG for a given sequence. The global methylation score is the global level of methylation for each biological sample in a given region calculated as the number of methylated CpG with the number of aligned CpG for all sequences and CpG positions for a given biological sample. Graphical representations were performed using barplot, boxplot and hist functions. C. Histogram showing the percentage of methylation for a given sequence. Each bar corresponds to a CpG position in a given sequence. Black corresponds to the percentage of methylated CpG, white to the percentage of unmethylated CpG. D. Distribution of the number of sequence per methylation level. For each sample, we used the Mixtools package in R that estimates the distribution of methylated fragments using a random sampling method and confidence intervals calculation. Ten classes were defined depending on the score of sequence methylation (0-10 to 90-100 %). The frequency of molecule within each class is calculated as the area under the curve. The intersection between the two curves gives the average percent of methylation. The frequency of molecules with a low methylation score (considered as hypomethylated) is calculated as the area under the red curve and frequency of molecules with a high methylation score (considered as methylated), as the area under the green curve.

Figure e-2. Validation of primers efficiency for determination of mean methylation level and percentage of hypomethylated sequences. We performed in vitro methylation of a plasmid carrying one repeat of the D4Z4 macrosatellite using the M.SssI methylase and mixed different proportions of methylated and unmethylated plasmids. After sodium bisulfite modification, PCR amplification and deep sequencing, we determined the global level of methylation and proportion of hypomethylated sequences using our deep sequencing and bioinformatic workflow. A. Representation of D4Z4 with the 4 regions (DR1, 5P, MID and 3P). B. Relationship between the global methylation level and the proportion of hypomethylated D4Z4 plasmid for the different D4Z4 primers. We observed a linear correlation between the quantity of unmethylated plasmids and number of hypomethylated reads. C. We plotted the percentage of hypomethylated molecules detected after deep sequencing to the percentage of hypomethylated plasmid used in the assay. 

Figure e-3. Heatmap representation of D4Z4 methylation level in blood samples. A. Methylation level was calculated for each individual CpG within the four D4Z4 subregions in blood DNA from controls, FSHD1 and FSHD2 patients. B. Schematic representation of the D4Z4 repeat and of the different regions analyzed by sodium bisulfite sequencing (DR1, 5P, MID, 3P). CpG sites significantly hypomethylated in FSHD1 and FSHD2 patients are colored in red. These CpGs are mainly clustered in the DR1 and 5P regions.

Figure e-4. Alignment of D4Z4 with the different primers used for bisulfite sequencing. The DR1, 5P, MID and 3P primers were blasted to the D4Z4 sequence present on chromosomes 4 and 10. Primers do not amplify D4Z4-like sequences present on other chromosomes.

Figure e-5. Distribution of the number of sequence with low or high methylation in blood samples from controls, FSHD1 or FSHD2 patients. For each sample, we used the Mixtools package in R to estimate the distribution of molecules with a low (red curve) or high (green curve) methylation level using a random sampling method and confidence intervals calculation. At least ten classes were defined depending on the methylation score (0-10 to 90-100 %). The global methylation level is calculated as the number of methylated CpG divided by the number of aligned CpG for all sequences for a given biological sample. The frequency of molecules with a low methylation score (considered as hypomethylated) is calculated as the area under the red curve and the frequency of molecules with a high methylation score (considered as methylated), as the area under the green curve. Representative data for one control, one FSHD1 and one FSHD2 patient are presented (highlighted in grey in table e-2). The number of hypomethylated molecules is statistically significant for the DR1 sequence in FSHD1 (p< 0.04) and FSHD2 (p< 0.001) and for the 5P region (FSHD1, p< 0.0001; FSHD2, p<0.004) compared to controls.

Figure e-6. Methylation profiles of different repetitive DNA sequences in control, FSHD1 and FSHD2 samples. A. Schematic representation of the genomic structure of the different types of repetitive DNA sequences. The genomic structure of the RS447 macrosatellite (Genbank accession number D38378.1) or TAR1 subtelomeric element (Genbank accession number M57753.1; 150bp fragment) is represented. For AluY (AluY, Repbase) short and LINE1 (L1HS, Repbase) long interspersed elements, consensus sequences are schemed. White arrows represent the open reading frame present within the repetitive elements. D4Z4 encodes the DUX4 double homeobox transcription factor. RS447 encodes the USP17 deubiquitinating enzyme 8. Primers amplify a 200bp encompassing the USP17 promoter region contained within RS447. Grey boxes correspond to CG-rich regions. The different repetitive sequences contain short repetitive elements such as LSau repeats, (CCA)n or (CA)n microsatellites. B. We analyzed the methylation profile of different types of repetitive elements after sodium bisulfite modification and deep-sequencing. In particular, we focused our attention on AluY and LINE1, the RS447 macrosatellite element and the TAR1 subtelomeric repeat. A schematic representation of the different sequences is provided. The region analyzed is indicated together with the number of CpG within each target sequence. For AluY, we analyzed a 123bp region, a 350bp region within the 5’ UTR of LINE-1 elements, a 200bp region in the promoter region of the RS447 macrosatellite and a 150bp of the TAR1 subtelomeric repeat. Histograms display the percentage of methylated (black) and unmethylated (white) CpG for each position. Analysis was done in blood DNA samples from healthy donors (CTRL), FSHD1 and FSHD2 patients. 

Figure e-7. Analysis of the distribution of methylation sequences for the DR1 region to discriminate mosaic patients. Representative distributions are presented for controls, FSHD1 and mosaic patients. For each sample, the number of sequenced molecules was plotted in different classes defined by their mean methylation level, from low (0-10% of methylated CpGs) to high (90-100% of methylated CpG). When the distribution does not follow a normal distribution, it is possible to divide sequenced molecules in two or more well-separated peaks using the "Mixtools" bootstrap algorithm in R. Curves display molecules showing distinct levels of methylation with differences between the overall mean of methylation and the mean methylation of each peak. Representative examples are presented for controls, FSHD1 and mosaic patients. Fourteen out of 16 mosaic patients display and intermediate level of methylation for the DR1 region (green curve, mosaic patients). 

[bookmark: _GoBack]Figure e-8. Alignment of the last D4Z4 repeat and adjacent qA sequence with primers used for bisulfite sequencing. The 3P and 4qBSS primers were blasted. The 4q BSS sequence overlaps with the 3P region in its proximal part with 14 CGs common to both amplicons..

Figure e-9. Analysis of CpG present at DUX4 splicing sites in the distal 4qA D4Z4 repeat. A. Schematic representation of the D4Z4 repeat and position of the different primers used for bisulfite sequencing, including the distal 4q BSS and 3P primers. Since changes in methylation of exonic region are often associated with alternative splicing sites usage, we indicated CG sites present at splicing junctions. B. We plotted the mean methylation levels of the 4q BSS sequence in control blood samples (n=6), FSHD1 (n=10) and FSHD2 (n=5). Histogram bars correspond to individual CpG with black bars corresponding to methylated CGs and white bars to unmethylated sites. CG1-3; 14 and 56 overlap with exon boundaries (indicated by a red box). CG1-3 are also present in the region amplified with the 3P primers. C. Mean methylation level of the different CG encompassing exon boundaries in the distal part of the D4Z4 repeat and adjacent 4qA region. In the different types of samples determined using the 4qA BSS primers. Methylation is highly variable for CG1-3 present within D4Z4 in FSHD1 and 2 compared to control but the difference is not significantly different (p value = 0.059 between controls and FSHD1).
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