Patient	w and published <i>QARS</i> variants. <i>QARS</i> variants (NM_005051.2)		Domain	Zygosity	Coding effect	Classification of variants according to Richards et al. 2015 (1)	SIFT	Polyphen (PolyPhen-2 v2.2.2r398)	gnomAD 2.0.1 (Allele Frequency, ALL)	Known <i>QARS</i> variation
1	c.1381delC	p.(Gln461Argfs*43)	CATD	compound heterozygous	frameshift	pathogenic (PVS1, PM2, PP2, PP3, PP4)	-	-	0	novel
	c.199C>T	p.(Arg67Trp)	NTD		missense	likely pathogenic (PM2, PM3, PP2, PP3, PP4)	deleterious (score: 0.02, median: 3.43)	probably damaging (score 0.999, sensitivity: 0.14, specificity: 0.99)	0	novel
2	c.1132C>T	p.(Arg378Cys)	CATD	compound heterozygous.	missense	likely pathogenic (PM2, PM3, PM5, PP2, PP3, PP4)	deleterious (score: 0, median: 3.47)	probably damaging (score 1.000, sensitivity: 0.00, specificity: 1.00)	0.0072 %	dbSNP: rs185476065
	c.1567C>T	p.(Arg523*)	CATD		nonsense	pathogenic (PVS1, PM2, PP2, PP3, PP4)	-	-	0.00081 %	dbSNP: rs767667312
3	c.1133G>A	p.(Arg378His)	CATD	homozygous	missense	likely pathogenic (PM2, PM3, PM5, PP2, PP3, PP4)	deleterious (score: 0.01, median: 3.47)	probably damaging (score 1.000, sensitivity: 0.00, specificity: 1.00)	0.00081 %	dbSNP: rs777116688
	c.1375del	p.(Glu459Asnfs*45)	CATD	compound heterozygous	frameshift	pathogenic (PVS1, PM2, PP2, PP3, PP4)	-	-	0	novel
4	c.1304A>G	p.(Tyr435Cys)	CATD		missense	likely pathogenic (PM2, PM3, PP2, PP3, PP4)	deleterious (score: 0, median: 3.44)	probably damaging (score 1.000, sensitivity: 0.00, specificity: 1.00)	0.0025 %	dbSNP: rs143462532
5	c.1389-3C>A	p.?	CATD	compound heterozygous	splice	likely pathogenic (PM2, PM3, PP2, PP3, PP4)	-	-	0	novel
	c.134G>T	p.(Gly45Val)	NTD		missense	pathogenic (PS3, PM2, PM3, PP1, PP2, PP3)	deleterious (score: 0.03, median: 3.43)	probably damaging (score 1.000, sensitivity: 0.00, specificity: 1.00)	0.0024 %	reported (2)
	c.2084+2_2084+3del	p.?	ABD	compound heterozygous	splice	likely pathogenic (PM2, PM4, PP2, PP3, PP4)	-	-	0	reported (3)
6	c.793C>T	p.(Arg265Cys)	CATD		missense	likely pathogenic (PM2, PM3, PP2, PP3, PP4)	deleterious (score: 0.01, median: 3.44)	probably damaging (score 1.000, sensitivity: 0.00, specificity: 1.00)	0	novel
7	c.40G>A	p.(Gly14Ser)	NTD	compound heterozygous	missense	likely pathogenic (PM2, PM3, PP2, PP3, PP4)	deleterious (score: 0, median: 3.43)	probably damaging (score 0.996, sensitivity: 0.55, specificity: 0.98)	0	novel
7	c.1573C>T	p.(Arg525Trp)	CATD		missense	likely pathogenic (PM2, PM3, PP2, PP3, PP4)	deleterious (score: 0, median: 3.44)	probably damaging (score 1.000, sensitivity: 0.00, specificity: 1.00)	0	ClinVar: RCV000623160.1
8	c.1570C>T	p.(Arg524Trp)	CATD	compound heterozygous	missense	likely pathogenic (PM2, PM3, PP2, PP3, PP4)	deleterious (score: 0, median: 3.44)	probably damaging (score 1.000, sensitivity: 0.00, specificity: 1.00)	0.0011 %	dbSNP: rs774980346, ClinVar: RCV000415807.1
	c.2068C>T	p.(Arg690Cys)	ABD		missense	likely pathogenic (PM2, PM3, PP2, PP3, PP4)	deleterious (score: 0, median: 3.44)	probably damaging (score 1.000, sensitivity: 0.00, specificity: 1.00)	0.0040 %	dbSNP: rs370934093, ClinVar: RCV000416268.1
	c.170_171insAAA	p.(Tyr57*)	NTD	compound heterozygous	nonsense	pathogenic (PVS1, PM2, PP2, PP3, PP4)	-	-	0	novel
9	c.170A>G	p.(Tyr57Cys)	NTD		missense	pathogenic (PS1, PM2, PM3, PP2, PP3, PP4	deleterious (score: 0.01, median: 3.43)	probably damaging (score 1.000, sensitivity: 0.00, specificity: 1.00)	0.00041 %	novel
10	c.1207C>T	p.(Arg403Trp)	CATD	compound heterozygous	missense	pathogenic (PS3, PM2, PM3, PP1, PP2, PP3)	deleterious (score: 0, median: 3.44)	probably damaging (score 1.000, sensitivity: 0.00, specificity: 1.00)	0.00072 %	reported (2)
	c.4G>A	p.(Ala2Thr)	NTD		missense	likely pathogenic (PS4, PM2, PM3, PP2, PP3, PP4	tolerated (score: 0.16, median: 3.41)	possibly damaging (score 0.919, sensitivity: 0.81, specificity: 0.94)	0	novel
11, 12	c.169T>C	p.(Tyr57His)	NTD	compound heterozygous	missense	pathogenic (PS3, PM2, PM3, PP1, PP2, PP3)	tolerated (score: 0.24, median: 3.43)	probably damaging (score 1.000, sensitivity: 0.00, specificity: 1.00)	0.00041 %	reported (2, 4)
	c.1543C>T	p.(Arg515Trp)	CATD		missense	pathogenic (PS3, PM2, PM3, PP1, PP2, PP3)	deleterious (score: 0, median: 3.44)	probably damaging (score 1.000, sensitivity: 0.00, specificity: 1.00)	0.0014 %	reported (2)
13, 14	c.134G>T	p.(Gly45Val)	NTD	compound heterozygous	missense	pathogenic (PS3, PM2, PM3, PP1, PP2, PP3)	deleterious (score: 0.03, median: 3.43)	probably damaging (score 1.000, sensitivity: 0.00, specificity: 1.00)	0.0024 %	reported(2)

Patient ID	<i>QARS</i> variants (NM_005051.2)		Domain	Zygosity	Coding effect	Classification of variants according to Richards et al. 2015 (1)	SIFT	Polyphen (PolyPhen-2 v2.2.2r398)	gnomAD 2.0.1 (Allele Frequency, ALL)	Known <i>QARS</i> variation
	c.1207C>T	p.(Arg403Trp)	CATD		missense	pathogenic (PS3, PM2, PM3, PP1, PP2, PP3)	deleterious (score: 0, median: 3.44)	probably damaging (score 1.000, sensitivity: 0.00, specificity: 1.00)	0.00072 %	reported (2)
15	c.1387C>T	p.(Arg463*)	CATD	compound heterozygous	nonsense	pathogenic (PVS1, PM2, PM3, PP2, PP3, PP4)	-	-	0.0016 %	reported (5)
	c.2226G>C	p.(Gln742His)	ABD		missense	likely pathogenic (PM2, PM3, PP2, PP3, PP4)	deleterious (score: 0, median: 3.44)	probably damaging (score 1.000, sensitivity: 0.00, specificity: 1.00)	0	reported (5)
16, 17,18	c.1426G>A	p.(Val476lle)	CATD	homozygous	missense	likely pathogenic (PS3, PS4m, PP1, PP2, PP3, PP4)	tolerated (score: 0.44, median: 3.44)	possibly damaging (score 0.701, sensitivity: 0.86, specificity: 0.92)	0.16 %	reported (6, 7)
19,20	c.169T>C	p.(Tyr57His)	NTD	compound heterozygous	missense	pathogenic (PS3, PS4m, PM2, PM3, PP1, PP2, PP3)	tolerated (score: 0.24, median: 3.43)	probably damaging (score 1.000, sensitivity: 0.00, specificity: 1.00)	0.00041 %	reported(2, 4)
	c.1485dup	p.(Lys496*)	CATD		nonsense	pathogenic (PVS1, PM2, PM3, PP2, PP3, PP4)	-	-	0	reported (4)
21	c.1058G>T	p.(Gly353Val)	CATD	homozygous	missense	likely pathogenic (PM2, PP2, PP3, PP4, PP5)	deleterious (score: 0.01, median: 3.44)	possibly damaging (score 0.758, sensitivity: 0.85, specificity: 0.92	0	reported (8)
22	c.2084+2_2084+3del	p.?	ABD	compound heterozygous	splice	likely pathogenic (PM2, PM4, PP2, PP3, PP4)	-	-	0	reported (3)
	c.793C>T	p.(Arg25Cys)	NTD		missense	likely pathogenic (PS4, PM2, PP2, PP3, PP4)	deleterious (score: 0.01, median: 3.44)	probably damaging (score 1.000, sensitivity: 0.00, specificity: 1.00)	0	reported (3)

NTD, N-terminal domain; CATD, catalytic domain, ABD, anticodon-binding domain

References

- Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17(5):405–24. doi: 10.1038/gim.2015.30.
- Zhang X, Ling J, Barcia G, Jing L, Wu J, Barry BJ et al. Mutations in QARS, encoding glutaminyl-tRNA synthetase, cause progressive microcephaly, cerebral-cerebellar atrophy, and intractable seizures. Am J Hum Genet 2014; 94(4):547–58. doi: 10.1016/j.ajhg.2014.03.003.
- Fuchs SA, Schene IF, Kok G, Jansen JM, Nikkels PGJ, van Gassen KLI et al. Aminoacyl-tRNA synthetase deficiencies in search of common themes. Genet Med 2018. doi: 10.1038/s41436-018-0048-y.

 Kodera H, Osaka H, Iai M, Aida N, Yamashita A, Tsurusaki Y et al. Mutations in the glutaminyl-tRNA synthetase gene cause early-onset epileptic encephalopathy. J Hum Genet 2015; 60(2):97–101. doi: 10.1038/jhg.2014.103.

 Salvario 408.7 e AM. Rossi A, Biancheri R, Roland EH, Pavlidis P et al. Expansion of the QARS deficiency phenotype with report of a family with isolated supratentorial brain abnormalities. Neurogenetics 2015; 16(2):145–9. doi:
- 10.1007/s10048-014-0432-y.
- Leshinsky-Silver E, Ling J, Wu J, Vinkler C, Yosovich K, Bahar S et al. Severe growth deficiency, microcephaly, intellectual disability, and characteristic facial features are due to a homozygous QARS mutation. Neurogenetics 2017; 18(3):141–6. doi: 10.1007/s10048-017-0516-6. Kuperberg M, Lev D, Blumkin L, Zerem A, Ginsberg M, Linder I et al. Utility of Whole Exome Sequencing for Genetic Diagnosis of Previously Undiagnosed Pediatric Neurology Patients. J Child Neurol 2016; 31(14):1534–9. doi:
- 10.1177/0883073816664836.
 Alabdullatif MA, Al Dhaibani MA, Khassawneh MY, El-Hattab AW. Chromosomal microarray in a highly consanguineous population: diagnostic yield, utility of regions of homozygosity, and novel mutations. Clin Genet 2017; 91(4):616–
- 22. doi: 10.1111/cge.12872.