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Supplementary material describing detailed methods and additional figures and 

references 

 

Non-ALS population controls 

The whole genome sequencing (WGS) data from 238 individuals were included as non-ALS 

population controls. These included 138 samples of African genetic ancestry from the Simons 

Genome Diversity Project,1 the 1000 Genomes Project,2 the South African Human Genome 

Program,3 and other samples from South Africa.4 The remaining 100 non-African samples 

which comprised 50 European and 50 Asian ancestry samples from the 1000 Genomes 

Project2 were specifically included for the purpose of demonstrating genetic admixture of the 

SAC samples (see supplementary figure 2). 

 

Whole genome sequencing 

DNA from 103 ALS patients was extracted from peripheral blood as previously described.4 

Forty-six of these were participants in the CReATe Consortium’s Phenotype, Genotype and 

Biomarker study (clinicaltrials.gov: NCT02327845) where 30X WGS was performed at 

Hudson Alpha (United States) using a PCR-prepared library on the Illumina NovaSeq 

instrument with 2 x 150bp read length. The remaining samples were sequenced to 30X 

coverage at the Kinghorn Centre for Clinical Genomics (Australia) using PCR-free library 

preparation on the Illumina HiSeq X Ten or Novaseq instruments with 2 x 150bp read length. 

The control datasets were sequenced on various Illumina instruments to a read depth ≥ 30X 

with read lengths of 100 or 150bp.  

 

Ancestry principal component analysis 

Bi-allelic single nucleotide polymorphisms (SNPs) from the joint called case and control 

WGS VCF file were subjected to variant-level filtering (removing markers with >5% missing 

genotypes, minor allele frequency <1%, Hardy-Weinberg equilibrium p value < 0.00001 and 

different missing data rates between cases and controls) using PLINK v1.9 

(http://pngu.mgh.harvard.edu/purcell/plink/).5 This was followed by linkage disequilibrium 

(LD) based SNP pruning (considering a window of 50 SNPs and removing those with 

LD>0.2) and a principal component analysis (PCA) to extract the top 10 principal 

components (PCs) of the variance-standardized relationship matrix. To construct the ancestry 
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PCA plot the eigenvectors for the first two PCs were visualized using Genesis PCA and 

Admixture Plot viewer (figure 1).6 

 

Ancestry admixture analysis 

Given the admixed nature of the South African Coloured (SAC) population, we inferred 

ancestry proportions for each SAC individual from the four major source populations (k=4) 

using ADMIXTURE software7 and representative proxy samples: EUR (10 British ancestry 

controls from the IPDC cohort), EAS (Vietnamese controls from the IPDC cohort), SAB (the 

Black African patients with ALS in this study) and KHS (1 Khoisan individual from the SGDP 

cohort). The output from this analysis was visualized using Genesis PCA and Admixture Plot 

viewer6 (supplementary figure 2). In line with previous findings8, we calculated the average 

African-ancestry contribution (SAB in red plus KHS in blue) in the 76 SAC ALS patients in 

this study to be 49% (IQR 23-76%). Given the genetic heterogeneity within the SAC group, 

we also mapped each of the likely pathogenic and pathogenic mutations described in this study 

to each patient to verify that our findings are a true reflection of the mutation spectrum in ALS 

patients with African or admixed African genetic ancestry. We observed that 10 individuals in 

the SAC group have no significant African genetic ancestry by admixture analysis (largely 

EUR and EAS admixed individuals) though none of these harboured likely pathogenic and 

pathogenic mutations. 

 

ALS-associated genes 

The panel of 44 genes selected in this study includes 21 ALS-associated genes screened for 

mutations in the CReATe Consortium’s Phenotype, Genotype and Biomarker (PGB1) genetic 

testing study, 16 genes approved for genetic testing in familial ALS ±FTD by the UK Genetic 

Testing Network steering group,8 and 7 candidate genes which still require replication or 

functional data to confirm their pathogenic role in ALS.9 Supplementary figure 1 shows these 

44 ALS-associated genes grouped together according to their associated clinical phenotype as 

described in the Online Mendelian Inheritance in Man (OMIM) database.10 

 

Standard variant annotation and filtering 

Variants in the joint called case and control WGS VCF file which passed variant quality 

score recalibration were decomposed (multiallelic variants split) and normalized using the vt 

tool.11 The Ensembl variant effect predictor (VEP)12 was used to annotate variants with their 

sequence context information such as gene and transcript level annotations using cache 
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version 101_GRCh38. Additional functional annotations were added using the SpliceAI13 vep 

plugin and the dbNSFP version 4.1a and dbscSNV1.1 databases.14,15 The most biologically 

relevant consequence per gene was selected using the vep --flag_pick_allele_gene flag which 

was configured to prioritize MANE transcript status (matched annotations from NCBI and 

EBI) (http://dev-tark.ensembl.org/web/mane_project/) followed by canonical status, APPRIS 

isoform annotation, transcript support level, biotype of transcript, CCDS status, consequence 

rank and length. Clinvar annotations16 were added from the 28/01/2021 ClinVar release. 

 

Variant classification according to ACMG guidelines 

For the subset of rare variants in gnomAD (PM2) which exceeded 1 allele in the South 

African ALS sample (n=7), we also used MAF information from the AWI-GEN dataset17 to 

interpret the rarity of these variants in African-ancestry samples (200 alleles) and assigned 

BS1 where the MAF exceeded 0.1% in this control dataset. 

 

REVEL18 was used for missense variant effect prediction as it was shown to be the top 

performing tool in accurately predicting the pathogenicity of missense variants and was not 

influenced by factors such as gene-level constraint and Mendelian inheritance pattern.19,20 

For functional effect prediction of splice region variants (including synonymous and 

nonsynonymous missense variants) we used the adaptive boosting (ada) and random forests 

(rf) ensemble scores from the dbscSNV database [14] assigning PP3 for those variants with 

both an ada_score and rf_score > 0.6 (predicted to alter splicing), otherwise BP4 was 

assigned (no predicted impact on splicing). Both BP4 and PP3 were assigned at a supporting 

strength level. 

 

BP1 was assigned at a supporting strength level for missense variants in NEK1 and KIF5A 

genes as truncating variants are presently the only known mechanism of variant pathogenicity 

for these two genes in the context of ALS.21–25 BP3 was assigned at a supporting strength 

level for an in-frame insertion in the FUS gene which was identified in a repetitive region 

without a known function. PS3 was assigned with varying strength levels depending on the 

strength of the functional evidence demonstrating a variant’s damaging effect on a gene 

product. PVS1 was assigned to loss of function (LOF) variants in the NEK1 gene but 

downgraded to a supporting strength level as NEK1 does not meet the criteria for a LOF 

disease mechanism in ALS and NEK1 LOF variants are observed in controls.26 PM5 was 

assigned at a moderate strength level for novel missense changes at an amino acid residue 
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where a different missense change determined to be pathogenic has been seen before. PP2 

was assigned at a supporting strength level for SOD1 missense variants as SOD1 is a gene 

with low rate of benign missense variation and pathogenic missense variants in SOD1 are a 

common cause of ALS. PS4 was assigned at a moderate strength level for SOD1, TARDBP 

and ANXA11 missense variants where ≥ 4 case reports could be identified. 

 

Supplementary Figures. 

 
e figure 1. The 44 ALS genes which were curated for mutations in 103 South Africans 

with ALS. Short variants from WGS data were determined for all genes except *C9orf72 

(screened only for the known pathogenic repeat expansion mutation) and *ATXN2 (screened 

only for intermediate length repeat expansions). ALS, amyotrophic lateral sclerosis; FTD, 

frontotemporal dementia; IBM, inclusion body myopathy; MSP, multisystem proteinopathy; 

PDB, Paget’s disease of the bone; HSP, hereditary spastic paraplegia; ALS-juv, juvenile-

onset ALS; PLS-juv, juvenile-onset primary lateral sclerosis; PS, Perry syndrome; HMN7B, 

distal hereditary motor neuropathy type 7B; CMT4J, Charcot-Marie-Tooth Type 4J. 
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efigure 2. Population structure (admixture) plot showing ancestry 

proportions in each South African Coloured (SAC) ALS patient 

estimated from four source populations. European ancestry (EUR in 

yellow) and East Asian ancestry (EAS in green) are represented by 10 

British and 10 Vietnamese ancestry controls from the 1000 Genomes 

Project2 respectively. South African Black ancestry (SAB in red) is 

represented by the Black African patients with ALS in this study and 

Khoisan ancestry (KHS in blue) is represented by one Khoisan individual 

from the SGDP sample.1 Individuals (represented by horizontal bars) 

with likely pathogenic and pathogenic mutations described in this study 

are indicated. 
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efigure 3. Approach to rare variant frequency filtering. The minor allele frequency 

(MAF) of established pathogenic ALS mutations in the gnomAD database (SOD1) and 

published reports (C9orf72) are shown. For SOD1 variants, each data point indicates the 

MAF in the various population subgroups (FE=Finnish European, other=ancestry not 

specified, NFE=non-Finnish European, SA=South Asian, LAT=Latino, admixed American, 

AFR=African, African-American, ASH=Ashkenazi Jewish, EA=East Asian) in the gnomAD 

database (filled circles refer to gnomAD v2.1.1 exomes and genomes non-neuro subset and 

open circles refer to gnomAD v3.1 genomes). The C9orf72 repeat expansion mutation carrier 

frequency is reported for various control cohorts from different publications. 27–31 

 

The STREGA reporting guidelines were used (https://www.goodreports.org/reporting-

checklists/strega/)(eMethods).32 
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Supplementary table 1. Sixty-two variants identified in 42 ALS genes in South Africans with ALS (n=103) classified according to ACMG 
evidence codes (see eMethods): likely benign (LB) variants (A, n=18), variants of uncertain significance (VUS) (B, n=38), likely pathogenic 
(LP) variants (C, n=1) and pathogenic (P) variants (D, n=5). HGVSp refers to the Human Genome Variation Society protein nomenclature to 
describe sequence variants. gnomAD v2.1.1 and v3.1 refers to frequency data (non-neuro subsets) from the gnomAD database 
(https://gnomad.broadinstitute.org); variants were reported as absent from gnomAD non-neuro subsets if sufficient coverage (>20x) of the 
variant site could be confirmed by examining the IGV read data plots in the gnomAD browser. REVEL refers to the metapredictor score 
described by Ioannidis et al., 2016.[1] All variants were heterozygous singletons unless indicated where homn refers to the number of 
homozygotes, hetn refers to the number of heterozygotes and allelesn  refers to the total number of alleles in the ALS sample. AWI-GEN MAF 
refers to the frequency of the variant in a sample of 100 Black South African controls (200 alleles);[2] this information is included for variants 
which were rare in gnomAD but found in more than 1 ALS sample (n=7, indicated by •). In the evidence codes column, ♦ indicates variants 
prioritized for future research based on the available evidence (see comments column) which are referenced in table 2A. For ClinVar 
interpretations, B=benign, LB=likely benign, VUS=variant of uncertain significance, LP=likely pathogenic, P=pathogenic, * indicates the 
review status of a record on 08/09/21 where 1 star=criteria provided, single submitter/conflicting interpretations, two stars=criteria provided, 
multiple submitters, no conflicts and no stars=no assertion criteria provided. 
 
 
 

A. Variants classified as likely benign according to ACMG criteria 

gene genomic change 
(hg38) 

HGVSp 
(exon number) variant class 

gnomAD v2.1.1 ; v3.1 
[homn, hetn, allelesn] 
(AWI-GEN MAF) 

REVEL 
score 

evidence codes 
(• reclassified LB) 

ClinVar 
interpretation 
(review status) 

comments 

ALS2 chr2:201715771:C>T R1302H (25) missense 2.4E-3 ; 2.9E-3 0.11 BS1_strong, BP4_supp LB (**) mutations in the ALS2 gene cause 
juvenile-onset AR ALS (ALS2) and HSP 

NEK1 chr4:169438121:G>C S909C (28) missense 2.4E-3 ; 2.2E-3 0.13 BS1_strong, BP4_supp, BP1_supp LB (*) 
NEK1 LOF variants more frequent in 

ALS cases vs controls [3–6], pathogenic 
role for missense NEK1 variants in ALS 

not established 

NEK1 chr4:169477476:G>C R721G (25) missense 2.7E-05 ; 1.5E-04 0.07 PM2_supp, BP4_supp, BP1_supp VUS (*) 

NEK1 chr4:169479449:A>G M689T (24) missense 2.8E-3 ; 2.4E-3 0.05 BS1_strong, BP4_supp, BP1_supp LB (*) 

NEK1 chr4:169585470:T>C Y229C (10) missense 1.7E-4 ; 2.2E-3 0.26 BS1_strong, BP4_supp, BP1_supp LB/VUS (*) 

MATR3 chr5:139325651:A>G N787S (15) missense 2.7E-3 ; 2.2E-3 
[0, 2, 2] 0.21 BS1_strong, BP4_supp B/LB (**) - 

SQSTM1 chr5:179833236:G>A G320E (6) missense 9.3E-5 ; 4.9E-6 
[0, 2, 2] (5.0E-03) 0.38 BS1_strong, BP4_supp• VUS (**) BS1 assigned as MAF>0.1% in AWI-

GEN dataset 

SETX chr9:132327078:T>G D1507A (10) missense 5.2E-4 ; 4.6E-4 
[0, 2, 2] (5.0E-03) 0.45 BS1_strong, BP4_supp• VUS (*) BS1 assigned as MAF>0.1% in AWI-

GEN dataset 



SETX chr9:132328165:G>A R1145W (10) missense 1.1E-5 ; 6.7E-5 
[1, 2, 4] (5.0E-03) 0.28 BS1_strong, BP4_supp• VUS (*) 

KIF5A chr12:57569669:G>T S368I (11) missense 1.1E-5 ; 0 0.23 PM2_supp, BP4_supp, BP1_supp - 

ALS-associated KIF5A variants are 
predominantly heterozygous LOF 
variants in the C-terminal region 

(residues 998-1007) [7] 

SPG11 chr15:44566301:G>C D2253E (37) missense 4.3E-3 ; 5.0E-3 0.13 BS1_strong, BP4_supp LB/VUS (*) homozygous or compound heterozygous 
LOF SPG11 variants segregate in 

juvenile ALS (ALS5) families [8], BS1 
assigned for D1421N as MAF>0.1% in 

AWI-GEN dataset 

SPG11 chr15:44596256:C>T D1421N (25) missense 7.5E-5 ; 8.0E-6 
[0, 2, 2] (5.0E-03) 0.11 BS1_strong, BP4_supp• VUS (*) 

SPG11 chr15:44657201:T>C K255E (4) missense 1.0E-3 ; 1.3E-3 0.03 BS1_strong, BP4_supp VUS (*) 

CCNF chr16:2448977:G>A R406Q (11) missense 7.7E-3 ; 5.0E-3 
[0, 2, 2] 0.24 BS1_strong, BP4_supp B (*) - 

FUS chr16:31185096: 
C>CGGCGGT G230_G231dup (6) inframe insertion 7.9E-5; 1.3E-4 

[0, 3, 3] (0) NA BS1_strong, BP3_supp• - 

gnomAD frequencies reported for 
insGGTGGT or insGGCGGC which 

results in equivalent amino acid change, 
i.e. G230_G231dup, BS1 assigned as 
inframe insertions and deletions are 
common in this stretch of 10 glycine 

residues (aa pos 222-231) in exon 6 of 
FUS protein (e.g. G231dup MAF 2.0E-3 

in gnomAD) 
GRN chr17:44350237:C>A S120Y (5) missense 2.7E-3 ; 2.4E-3 0.15 BS1_strong, BP4_supp B/LB (**) 

- 
GRN chr17:44350271:C>G F131L (5) missense 1.8E-3 ; 1.4E-3 0.36 BS1_strong, BP4_supp LB/VUS (*) 

NEFH chr22:29489379:C>T S580F (4) missense 9.2E-4 ; 1.1E-3 
[0, 2, 2] 0.22 BS1_strong, BP4_supp -  

B. Variants of uncertain significance as classified according to ACMG criteria 

gene genomic change 
(hg38) 

HGVSp 
(exon number) variant class gnomAD v2.1.1 ; v3.1 

[homn, hetn, allelesn] 
REVEL 

score 
evidence codes 

(♦ = research) 

ClinVar 
interpretation 
(review status) 

comments 

TARDBP chr1:11016874:C>T A90V (3) missense 3.5E-4 ; 4.2E-4 0.17 PM2_supp, BP4_supp, PS3_supp, 
PS4_mod ♦ VUS (**) 

commonly cited ALS-associated (risk 
factor?) variant, functional studies show 
altered protein function though not to the 

same degree as pathogenic mutant [9] 

ALS2 chr2:201723407:C>T V1183M (22) missense 5.7E-4 ; 5.0E-4 
[0, 2, 2] (0) 0.08 PM2_supp, BP4_supp• VUS (*)  

TUBA4A chr2:219252100:C>G G45A (2) missense 2.0E-4 ; 0 0.16 PM2_supp, BP4_supp - - 



LGALSL chr2:64456407:G>A R106K (4) missense 3.7E-6 ; 1.6E-5 0.10 PM2_supp, BP4_supp - 
LGALSL variants more frequent in ALS 

cases vs controls though pathogenicity of 
individual variants not confirmed [10,11] 

DCTN1 chr2:74362700:C>G E1187Q (30) missense absent 0.29 PM2_supp, BP4_supp - DCTN1 E34Q located in the DCTN1 
CAP-Gly domain, found in 1 ALS case 

and 1 control, PS3 assigned at supporting 
strength level as 1 study showed altered 
protein function though not to the same 

degree as pathogenic mutant [12] 

DCTN1 chr2:74363304:C>G S1112T (28) missense absent 0.14 PM2_supp, BP4_supp - 

DCTN1 chr2:74378179:C>G E34Q (2) missense 6.9E-5 ; 5.8E-5 0.77 PM2_supp, PP3_supp, PS3_supp♦ VUS (**) 

NEK1 

chr4:169424747: 
GCACAGACTT 

ATCTACATCAC 
ATTTAGAGTG 
CTGAGAAT>G 

D997AfsTer8 (31) frameshift absent NA PM2_supp, PVS1_supp♦ - 
NEK1 LOF variants more frequent in 
ALS cases vs controls [3–6], PVS1 

evidence code downgraded to supporting 
strength level as NEK1 does not meet the 
criteria for a LOF disease mechanism in 

ALS and NEK1 LOF variants are 
observed in controls [13] 

NEK1 chr4:169508777: 
CTT>C K580RfdTer19 (20) frameshift absent NA PM2_supp, PVS1_supp♦ - 

NEK1 chr4:169587582:C>A E195Ter (9) stop gained absent NA PM2_supp, PVS1_supp♦ - 

MATR3 chr5:139315732:A>G H337R (6) missense 9.0E-4 ; 6.8E-4 0.28 PM2_supp, BP4_supp LB (*) - 

SQSTM1 chr5:179820941:C>T A2V (1) missense 4.3E-5 ; 2.6E-4 0.04 PM2_supp, BP4_supp VUS (*) PM5 assigned as SQSTM1 P387L found 
in FTD cases [14] including segregation 

with disease in FTD family [15], found in 
familial PDB with incomplete penetrance 

[16] and functional studies indicate 
altered protein function [17,18] 

SQSTM1 chr5:179833776:C>G P387A (7) missense 1.1E-5 ; 1.6E-5 0.66 PM2_supp, PP3_supp, PM5_mod♦ - 

FIG4 chr6:109716449:T>A V57D (3) missense absent 0.38 PM2_supp, BP4_supp VUS (*) 

LOF variants found in ALS cases [19] 
but incomplete penetrance [20], 

pathogenic role of specific missense 
variants uncertain 

SETX chr9:132264856:G>C L2473V (26) missense 1.3E-4 ; 7.3E-5 0.28 PM2_supp, BP4_supp VUS (*) 

SETX harbours pathogenic heterozygous 
missense variants segregating in juvenile 

ALS (ALS4) families distributed 
throughout the protein [21,22] 

SETX chr9:132300688:T>C I1830M (12) missense 0 ; 6.8E-5 
[0, 2, 2] (0) 0.17 PM2_supp, BP4_supp• - 

SETX chr9:132327208:G>A P1464S (10) missense 2.9E-5 ; 8.0E-6 0.20 PM2_supp, BP4_supp VUS (*) 

SETX chr9:132329314:T>A N762Y (10) missense 1.1E-5 ; 0 0.23 PM2_supp, BP4_supp - 

ANXA11 chr10:80164100:G>C S301C (10) missense 0 ; 8.0E-6 0.63 PM2_supp, PP3_supp - - 

PRPH chr12:49297188:C>T A304V (5) missense 3.3E-5 ; 0 0.68 PM2_supporting, PP3_supp - limited data on PRPH mutations in ALS 

HNRNPA1 chr12:54282856:A>G N245D (7) missense absent 0.36 PM2_supporting, BP4_supp - - 



TBK1 chr12:64466943:G>A R134H (5) missense 3.0E-6 ; 1.6E-5 0.73 PM2_supp, PP3_supp, PS3_supp♦ - 
TBK1 R134H identified in ALS case [10] 

and functional studies indicate altered 
protein function [23] 

DAO chr12:108887563:C>T P103L (3) missense 
(splice region) 2.8E-3 ; 1.6E-3 

0.44 
ada_score=0.994 
rf_score=0.752 

BS1_strong, PP3_supp LB (*) P103L found in 2 FALS patients but also 
in controls [24] 

SPG11 chr15:44570607:A>G M2132T (34) missense 6.0E-5 ; 5.0E-4 0.76 PM2_supp, PP3_supp VUS (*) 
M2132T also identified in an African 
ancestry case with hereditary spastic 

paraplegia from another cohort 

SPG11 chr15:44600566:C>T R1196H (21) missense 8.9E-6 ; 1.2E-5 0.43 PM2_supp, BP4_supp VUS (**) 
homozygous or compound heterozygous 

LOF SPG11 variants segregate in 
juvenile ALS (ALS5) families [8] 

SPG11 chr15:44621836:C>T R848K (14) missense 2.6E-5 ; 2.1E-4 0.08 PM2_supp, BP4_supp - 

SPG11 chr15:44628823:T>C K638R (10) missense 2.3E-4 ; 2.0E-4 0.09 PM2_supp, BP4_supp VUS (*) 

CCNF chr16:2445550:A>T Y341F (10) missense 9.2E-4 ; 7.9E-4 0.18 PM2_supp, BP4_supp - 
- 
 CCNF chr16:2453488:G>A G556R (15) missense absent 0.06 PM2_supp, BP4_supp - 

CCNF chr16:2456926:C>T P756L (17) missense 3.0E-4 ; 5.4E-4 0.01 PM2_supp, BP4_supp - 

FUS chr16:31185061:C>T R216C (6) missense 2.9E-4 ; 1.4E-3 0.68 BS1_strong, PP3_supp P pathogenic ALS/FTD FUS mutations 
cluster in exons 3, 5-6 and 13-15 [25]; 

R274C has MAF 2.7E-04 in ProjectMine 
controls 

FUS chr16:31188345:C>T R274C (8) missense 3.7E-6 ; 0 0.11 PM2_supp, BP4_supp - 

SOD1 chr21:31667309:T>A D97E (4) missense 6.2E-5 ; 3.1E-5 0.31 PM2_supp, BP4_supp, PP2_supp♦ - 

1 report describes recessive ALS family 
where affected individuals carry 

heterozygous SOD1 D97N and D91A 
mutations [26], D97V detected in 1 

healthy control (73yrs, no family history 
of ALS) (ClinVar accession 

SCV000994920.1) 

EWSR1 chr22:29282514:C>T P180S (6) missense absent 0.57 PM2_supp, PP3_supp - limited data on EWSR1 mutations in ALS 

NEFH chr22:29480518:G>A G86S (1) missense 2.0E-4 ; 2.0E-4 0.22 PM2_supp, BP4_supp - 

NEFH N390T found in 1 FTD case [27] NEFH chr22:29485808:A>C N390T (3) missense 4.0E-4 ; 1.7E-4 0.84 PM2_supp, PP3_supp♦ VUS (*) 

NEFH chr22:29489215:G>C K525N (4) missense 4.2E-4 ; 1.9E-4 0.22 PM2_supp, BP4_supp VUS (*) 

UBQLN2 chrX:56565446:C>T P525S (1) missense 8.2E-3 ; 6.2E-6 0.53 BS1_strong, PP3_supp♦ B/LB/VUS (*) 

UBQLN2 P525S found in 2 FTD families 
with incomplete penetrance [28,29], 
BS3/PS3 not assigned as functional 

studies report conflicting results [30–32] 

C. Variants classified as likely pathogenic according to ACMG criteria 

ANXA11 chr10:80170859:C>T G38R (5) missense 3.9E-5 ; 3.8E-5 0.26 PM2_supp, BP4_supp, PS3_strong, 
PS4_mod ♦ P ANXA11 G38R found in ALS cases [33–

35], PS3 assigned at moderate strength 



level for this variant as multiple 
functional studies indicate altered protein 

function [33,35–37] 

D. Variants classified as pathogenic according to ACMG criteria 

gene genomic change 
(hg38) 

HGVSp 
(exon number) variant class gnomAD v2.1.1 ; v3.1 

[homn, hetn, allelesn] 
REVEL 

score 
evidence codes 

(♦ = research) 

ClinVar 
interpretation 
(review status) 

comments 

SOD1 chr21:31667278:A>G N87S (4) missense absent 0.85 PM2_supp, PP3_supp, PP2_supp, 
PS4_mod, PS3_strong P/LP (**) 

reported in heterozygous state in many 
ALS cases  [38–43] and in homozygous 
state in individual with juvenile-onset 

ALS [44] 

SOD1 chr21:31667299:G>A G94D (4) missense absent 0.91 PM2_supp, PP3_supp, PP2_supp, 
PS4_mod, PS3_strong P (*) observed in several ALS cases including 

segregation in families 

SOD1 chr21:31667359:T>C I114T (4) missense 1.1E-5 ; 1.6E-5 0.99 PM2_supp, PP3_supp, PP2_supp, 
PS4_mod, PS3_strong P (**) 

I114T most frequent SOD1 mutation in 
the UK and the third most prevalent 

SOD1 mutation worldwide [45] 

SOD1 chr21:31668547:T>C L145S (5) missense absent 0.96 PM2_supp, PP3_supp, PP2_supp, 
PS4_mod, PS3_strong P (**) observed in several ALS cases including 

segregation in families 

SOD1 chr21:31668548:G>C L145F (5) missense absent 0.92 PM2_supp, PP3_supp, PP2_supp, 
PS4_mod, PS3_strong P (**) observed in several ALS cases including 

segregation in families 
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