eTable 4. Senescence and immunomodulatory markers analyzed by flow cytometry

Marker	Biological relevance	Relevance in diseases	Ref.
CD28	 Costimulatory molecule Downregulation due to repeated antigen exposure is a hallmark of cellular senescence CD28- T cells display cytotoxic capacities, resistance to apoptosis 	 Expansion of CD28- T cells in peripheral blood during natural aging, virus infection (e.g. HIV, CMV), autoimmune diseases (e.g. RA, SLE, MS) CD4+CD28- T cells found in brain lesions of MS patients, exhibited pathogenic properties contributing to tissue damage 	e6–11
CD57	 Marker for replicative senescence Expressed on highly differentiated T cells 	- Expansion in individuals with chronic immune activation (e.g. HIV) and during natural aging	e11–13
KLRG1	 Coinhibitory molecule Highly expressed on human differentiated memory T cells Marker for replicative senescence 	- Increased frequencies during natural aging and virus infection (e.g. CMV, EBV, HIV)	e13–15
LAG3	 Coinhibitory molecule Exhaustion marker Inhibits inflammatory responses 	 Increased expression during virus infection (e.g. HIV) Deficiencies in the LAG-3 pathway linked to the development of autoimmune diseases (autoimmune diabetes, RA) 	e16–20
CTLA-4	 Coinhibitory molecule Exhaustion marker Inhibits inflammatory responses 	 Increased expression during virus infection (e.g. HIV) CTLA-4 deficiency in animal models is linked to development of autoimmune disorders (e.g. SLE) Further human clinical studies are necessary to proof the efficacy CTLA-4 blockade in patients with autoimmune disorders 	e16,17,
CD226 (DNAM-1)	 Costimulatory molecule Modulates inflammatory signaling pathways contributing to CNS autoimmunity, proliferation, adhesion, differentiation of T cells 	 CD226 promotes proinflammatory Th1 and Th17 responses driving pathogenesis of autoimmune disorders (e.g. MS) Genetic variants in CD226 lead to a higher susceptibility to develop MS CD226 deficiency in animal models for MS and typ 1 diabetes leads to an amelioration of symptoms 	e22–28