Supplementary figures

eFigure 1. Count of CD19⁺ B-cells, CD4⁺ and CD8⁺ T-cells before and after OCR

(A) Cell counts of CD19⁺ B-cells) subset within lymphocytes at baseline (white), 24 weeks (24 Wk) and 48 weeks (48 Wk) of OCR treatment (black) (Baseline 223 ± 105 cells/µl, 48 Wk 6 ±17 cells/µL. (B) Cell counts (cells/µl) of CD4⁺ T-cells at baseline (white), 24 and 48 Wk of OCR treatment (black) (Baseline 999 ± 316 cells/µl, 48 Wk 974 ± 277 cells/µL). (C) Cell counts (cells/µl) of CD8⁺ T-cells at baseline (white), after 24 and 48 Wk of OCR treatment (black) (Baseline 491 ± 206 cells/µl, 48 Wk 444 ± 197 cells/µL). *The counts of cells were calculated with the frequency and the complete blood count at baseline, 24 and 48 Wk of OCR. One-way ANOVA with correction by Tukey's multiple comparison test was used.* **P* < 0.05, ***P* < 0.001, ****P* < 0.0001 (mean with SD) (*n* = 32).

eFigure 2. No effect of ocrelizumab treatment on Treg subsets

(A-B) t-SNE CUDA projections of CD4⁺ or CD8⁺ T-cell clusters identified by FlowSOM metaclustering (1*10⁴ cells/patient/time point). (C-D) Representation of CD4⁺ and CD8⁺ T-cells adjusted P value to compare each cluster at baseline and after 48 Wk of OCR treatment. (E-F) Heatmap representation of the indicated markers for the CD4⁺ and CD8⁺ T-cell clusters at baseline, 24 and 48 Wk of OCR treatment. *Unsupervised analyses were performed on OMIQ* (*https://www.omiq.ai/*) (A-B). The Bonferroni multiple test correction (C-D) was used. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 (n = 32).

eFigure 3. Frequency and phenotype of CD4⁺ and CD8⁺ T-cell clusters modified by OCR

(A) Abundance of the C1, C2, C3, and C4 clusters among the CD4⁺T-cells at baseline, 24 and 48 Wk of OCR treatment (C1: Baseline $1.9 \pm 2.4\%$, 48 Wk $1.3 \pm -2\%$; C2: Baseline $43.9 \pm 15.2\%$, 48 Wk $50.5 \pm 14.3\%$; C3: Baseline $1.07 \pm 1.1\%$, 48 Wk $0.59 \pm 0.5\%$ and C4: Baseline $3.6 \pm 1.6\%$, 48 Wk $2.9 \pm 1.3\%$). (B) Abundance of the C1 cluster among the CD8⁺ T-cells at baseline, 24 and 48 Wk of OCR treatment (Baseline $7.2 \pm 4.9\%$, 48 Wk $4.2 \pm 3.3\%$). (C-D) Heatmap representation of the indicated markers for the CD4⁺ and CD8⁺ T-cell clusters at baseline, 24 and 48 Wk of OCR. *One-way ANOVA with correction by Tukey's multiple comparisons (A-B) was used.* **P* < 0.05, ***P* < 0.01, ****P* < 0.001, *****P* < 0.0001 (mean with SD) (*n* = 32).

eFigure 4. Frequency of T-bet in CD4⁺ and CD8⁺ T-cells

Frequency of T-bet⁺ cells among CD4⁺ T-cells (Baseline $2.1 \pm 2.9\%$, 48 Wk $1.2\pm 2.1\%$) and $CD8^+$ T-cells (Baseline 25.7 ± 13.3%, 48 Wk 23.8±13.7%) subsets at baseline, 24 and 48 Wk of OCR treatment. One-way ANOVA with correction by Tukey's multiple comparison test was used. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 (mean with SD) (n = 32).

eFigure 5. Naive/memory subsets and phenotype of CD3⁺CD20⁺ T-cells.

(A) Cell counts (cells/µl) of CD4⁺CD20⁺ and CD8⁺CD20⁺ T-cells subset at baseline (white), 24 and 48 Wk of OCR treatment (black). (B) Frequency (%) of CCR5⁺ and CCR6⁺ cells within CD20⁻ and CD20⁺ cells at baseline. (C) Mean fluorescence intensity of CD11a and CD49d cells within CD20⁻ and CD20⁺ cells at baseline. (D) Gating strategy on 20 patients overlaid on CD4⁺CD20^{+/-} or CD4⁺CD20^{+/-} at baseline. The gating strategy is shown after the exclusion of dead cells and doublets. The CD4⁺ and CD8⁺ T-cells are analyzed with CD45RA and CCR7⁺ naive (CD45RA⁺CCR7⁺), EM (CD45RA⁻CCR7⁻), CM (CD45RA⁻CCR7⁺), and TEMRA (CD45RA⁺CCR7⁻) cells. (E) Frequency of naive, TEMRA, EM, CM within CD4⁺CD20⁺ T-cells and CD4⁺CD20⁻ T-cells at baseline. (F) Frequency of naive, TEMRA, EM, CM within CD8⁺CD20⁺ and CD8⁺CD20⁻ T-cells at baseline. *The counts of cells were calculated with the frequency and the complete blood count at baseline 24 and 48 Wk of OCR treatment. Friedman test with Dunn's correction (A), paired t-test (B-C) and one-way ANOVA with correction by Greisser–Greenhouse (E-F) were used. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 (mean with SD) (n = 20).*

eFigure 6. NK cell cytotoxicity by ADCC against B-cells or CD8⁺CCR5⁺CD20⁻ T-cells

CFSE labelled B cells or CD8⁺CCR5⁺CD20⁻ T cells were co-cultured with NK cells from 6 healthy donors during 4 hours with Ocrelizumab or control isotype at a concentration of 0.1µg/mL. The effector:target ratio used was 5:1. Cytotoxicity was evaluated by a TO-PRO-3-iodide staining and by flow cytometry analysis. The percentage of cytotoxicity was calculated as: (%TO-PRO-3-iodide⁺CFSE⁺ cells in the co-culture - % TO-PRO-3-iodide⁺CFSE⁺ cells background) / (%TO-PRO-3-iodide⁺CFSE⁺ cells in maximum - % TO-PRO-3-iodide⁺CFSE⁺ cells background) x 100. *Multiple t test was used.* *****P* < 0.0001; *P*=*ns (non significant) (mean with SEM) (n* = 6).

eFigure 7: Identification of CD8⁺T-cell clusters from blood and CSF samples of patients with other inflammatory neurological diseases.

(A) Pie chart summarizing the cell proportions in each cluster. The inside circle represents cells from CSF, and the outer circle represents cells from the blood. Stars indicate when the proportion in the clusters is significantly higher in one group than the other. (B) Heatmap of the most significant genes defining the clusters with the blood and CSF single cells from patients with other inflammatory neurological diseases. Genes that are circled in each cluster are those that are significantly relevant to define the cluster. *Chi2 test was performed to identify significant differences in proportion and adjusted residues were calculated to define these differences between clusters (* mean statistically linked to the group) (A).* *P < 0.05, **P < 0.01, ***P < 0.001, ***P < 0.001 (Blood n=14, CSF n=3)

Supplementary tables

eTable 1. Listing of antibodies

Panel	Antigen	Fluorochrome	Clone	Manufacturer	Staining Step	Dilution		
A. For T-	cell profiling							
1-2	Viability	Live/dead blue	-	Thermo Fisher	1 st	1:1000		
1	CCR7	BV785	G043H7	Biolegend	2nd	1:40		
1	CCR5	BV421	2D7/CCR5	BD Biosciences	3rd	1:40		
1	CCR6	PE	G034E3	Biolegend	3rd	1:160		
1	CD3	BUV395	UCHT1	BD Biosciences	4th	1:40		
1	CD8	BUV805	SK1	BD Biosciences	4th	1:160		
1	CD4	Alexa 532	RPA-T4	Thermo Fisher	4th	1:80		
1	CD19	BV510	HIB19	Biolegend	4th	1:40		
1	CD20	BUV737	2H7	BD Biosciences	4th	1:80		
1	CD14	FITC	M5E2	Biolegend	4th	1:160		
1	CD56	SuperBright600	TULY56	Thermo Fisher	4th	1:40		
1	CD16	V450	3G8	BD Biosciences	4th	1:160		
1	CD45RA	PercP-Vio700	REA562	Miltenyi biotec	4th	1:400		
1	CD161	APC	191B8	Miltenyi biotec	4th	1:100		
1	CD49d	PE-Vio770	REA545	Miltenyi biotec	4th	1:400		
1	CD11a	PE-Dazzle594	HI111	Biolegend	4th	1:80		
1-2	CD3	BUV395	UCHT1	BD Biosciences	2nd	1:40		
1-2	CD8	BUV805	SK1	BD Biosciences	2nd	1:160		
1-2	CD4	Alexa 532	RPA-T4	Thermo Fisher	2nd	1:80		
2	CD127	APC R700	HIL-7R-M21	BD Biosciences	2nd	1:80		
2	CD45RC	FITC	MT2	IQ-products	2nd	1:100		
2	CD161	PE-Vio770	191B8	Miltenyi biotec	2nd	1:200		
2	CD25	PE	2A3	BD Biosciences	2nd	1:40		
2	CD39	BV750	GB11	BD Biosciences	2nd	1:100		
2	CD103	BUV661	TU66	BD Biosciences	2nd	1:100		
2	Granzyme B	V450	Ber-ACT8	BD Biosciences	3rd	1:50		
2	Perforin ^a	PercP Cy5,5	B-D48	Biolegend	3rd	1:50		
2	Tbet ^a	BV421	4B10	Biolegend	3rd	1:50		
2	FoxP3 ^a	PE CF594	206D	Biolegend	3rd	1:50		
B. For T-cell sorting								
	Viability	Dapi	-	BD biosciences	2nd	1 :100		
	CD3	PE	UCHT1	BD Biosciences	1 st	1 :100		
	CD8	APC-H7	SK1	BD Biosciences	1 st	1 :100		
	CD45RA	APC-Vio770	T6D11	Miltenyi Biotec	1 st	1 :100		
	Vα7.2	FITC	3C10	Biolegend	1 st	1 :100		
C. For Cytotoxic assay								
	CD3	PE-CF594	OKT3	Biologend	1st	1 :100		
	CD8	BV510	SK1	BD Biosciences	1st	1 :100		
	CD56	V450	B159	BD Biosciences	1st	1 :50		
	CD20	PE	2H7	BD Biosciences	1st	1 :10		
	CD45RA	APC	HI100	BD Biosciences	1st	1 :20		
	CCR7	PE-Cy7	3D12	BD Biosciences	1st	1 :50		
	CCR5	FITC	2D7/CCR5	BD Biosciences	1st	1 :50		

^a Intracellular marker

Genes	References
ALCAM	Hs00977641 m1
BLIMP-1	Hs01068508 m1
CCL20	Hs01011368 m1
CCL3	Hs00234142 m1
CCL4	Hs00237011 m1
CCL5	Hs00982282 m1
CCR5	Hs00152917 m1
CCR6	Hs00171121 m1
CCR7	$H_{s}01013/60 m1$
CD107a	$H_{c}00021464$ m1
CD107a	$H_{c}01081607 m1$
CD122	$H_{c}00004814$ m1
CD127	HS00904814_III
CD101	Hs00955894_m1
CD244	Hs001/5568_m1
CD25	Hs00907779_m1
CD27	Hs00386811_m1
CD28	Hs01007422_m1
CD3E	Hs01062241_m1
CD38	Hs01120071_m1
CD4	Hs01058407_m1
CD40L	Hs00163934_m1
CD56	Hs00941833_m1
CD57	Hs00218629_m1
CD58	Hs00156385_m1
CD62L	Hs01053460 m1
CD69	Hs00934033 m1
CD8a	Hs00233520 m1
CD94	Hs00233844 m1
CD95	Hs01106214 m1
CTLA4	Hs03044418_m1
EOMES	Hs00172872 m1
FGL2	Hs00173847 m1
FOXP3	Hs00203958 m1
GM-CSF	Hs00171266_m1
GNI V	Hs00246266 m1
GZMA	$H_{s}00989184 m1$
GZMR	$H_{c}00188051 m1$
GZMH	$H_{c}00277212 m1$
	$H_{c}00157878 m1$
	ПS0015/8/8_III Ца00174142_m1
IFING IFNL-D1	HS001/4145_m1
IFNgKI	Hs00988304_m1
ILIO HIODA	Hs00961622_m1
ILI0RA	Hs00155485_ml
ILI3	Hs001/43/9_ml
CD103	Hs00559580_m1
IL12A	Hs00168405_m1
IL15	Hs01003716_m1

KLRG1	Hs00195153_m1
BCL2	Hs00608023_m1
IL17RA	Hs01064648 m1
BCL6	Hs00153368 m1
IL18R1	Hs00977691 m1
IL18RAP	Hs00977695 m1
S1PR1	Hs01922614 s1
IL2	Hs00914135 m1
STAT5	Hs00273500 m1
ICOS	Hs04261471 m1
IL23R	Hs00332759 m1
LCK	Hs00178427 m1
IL26	Hs00218189 m1
ID2	Hs04187239 m1
ID3	Hs00954037 g1
DICAM	Hs00260584 m1
IRF1	Hs00971960_m1
IRF3	Hs01547282 m1
IRF4	Hs01056533 m1
Lag3	Hs00158563 m1
LFA1a	Hs00158218 m1
LFA1b	Hs00164957 m1
MCAM	Hs00174838 m1
PD1	Hs01550088 m1
PDL1	Hs01125301 m1
PRF1	Hs00169473 m1
PSGL1	Hs04276253 m1
PLZF	Hs00957433 m1
RORC	Hs01076112 m1
GATA3	Hs00231122-m1
ZAP70	Hs00896345 m1
SMAD3	Hs00969210 m1
STAT3	Hs00374280 m1
TRET	Hs00203436 m1
TCF7	Hs00175273 m1
TGFb1	$H_{s}00171257 m1$
TGFhR1	Hs00610320 m1
TGFbR?	$H_{s}(0)^{2}^{4}^{5}^{2}$ m ¹
TGFbR3	$H_{s}(0)^{2}_{3}^{4}_{2}^{5}_{5}^{111}$
TNF	$H_{s}00000012 m1$
TNEDCEO	$H_{c}(0) = 1577777777777777777777777777777777777$
TNFRGF19	$H_{s}(0) = \frac{1300133312}{111}$
VI A/a	$H_{c}(0.168/133 m^{-1111})$
VI AAh	$H_{e}(11275/12 m^{-1})$
VLAHU ITCD7	$H_{c}(1565750 \text{ m}^{-1})$
MVO5A	$H_{\rm s}00165200$ m ⁻¹
	пsuu103309_ml
	пsуууууууу_ml Ца001002791
	пs001902/8_ml
B-ACI	нs99999903_ml

Subset	Cluster	Panel 1	Panel 2	
	C1	EM CCR5 ^{int} CCR6 ⁻ C161 ⁺	CD25 ⁺ CD39 ⁺ FoxP3 ⁺	
	C2	Naive	CD127 ^{int} CD45RC ^{int}	
	C3	EM CCR5 ⁺ CCR6 ⁻	CD127 ^{int} CD45RC ^{high}	
	C4	EM CCR5 ⁻ CCR6 ⁻	CD127 ^{int} CD103 ⁺	
	C5	CM CD49d ⁺ CCR6 ⁺ CD161 ⁺	CD127 ^{lo} CD161 ⁺	
	C6	Naive CCR6 ⁺	CD127 ⁺ CD161 ⁺	
CD4	C7	CM CCR6 ⁺	CD161 ⁺ T-bet ⁺ Perf ⁺ GzB ⁺	
CD4+	C8	CM CD49d ⁻ CCR5 ⁻ CCR6 ⁻	CD127 ⁺	
	С9	CM CD161 ⁺		
	C10	TEMRA		
	C11	EM CCR5 ⁺ CCR6 ⁺ CD161 ⁺		
	C12	CM CD49d ⁻ CCR6 ⁺ CD161 ⁻		
	C13	CM CD49d ⁻ CCR6 ⁺ CD161 ⁺		
	C14	CM CD49d ⁺ CCR5 ⁻ CCR6 ⁻		
	C1	EM CCR5 ⁺ CCR6 ⁻	T-bet ⁺ Perf ⁺ GzB ⁺	
	C2	Naive	$T\text{-}bet^+CD45RC^{high}Perf^+GzB^+$	
	C3	EM CCR5 ⁻ CCR6 ⁻	$T\text{-}bet^+CD161^{int}CD45RC^{lo}Perf^+Gzb^+$	
	C4	CM CCR5 ⁻ CCR6 ⁻	$CD25^{lo}CD127^+CD161^{high}$	
CD8+	C5	EM CCR5 ⁻ CCR6 ⁺	CD127 ^{lo} CD161 ^{int}	
CD0+	C6	CD56 ⁺ CD16 ⁺	T-bet ⁺ GzB ⁺	
	C7	EM CD161 ⁺	$CD25^{lo}CD127^{lo}CD45RC^{high}$	
	C8	TEMRA CD161-	CD127 ^{lo}	
	C9	EM CCR5 ⁺ CCR6 ⁺ CD161 ^{high}	$CD25^+CD127^+CD39^+CD103^+CD45RC^{high}$	
	C10	TEMRA CD161 ⁺	CD25 ⁺ CD127 ⁺ CD103 ⁺ .	

eTable 3. Phenotype of CD4 $^{\scriptscriptstyle +}$ and CD8 $^{\scriptscriptstyle +}$ T cell clusters

EM (Effector Memory: CD45RA CCR7⁻), CM (Central Memory: CD45RA CCR7⁺), TEMRA (terminally differentiated effector memory cells re-expressing CD45RA: CD45RA⁺CCR7⁻), Naïve (CD45RA⁺CCR7⁺) Perf: Perforin, Gzb: Gramzyme B