
APPENDIX A 

The general equation describing oxygen transport through the lens-corneal system, in one 

dimension, is Fick's second law with reaction.34 
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 (Eq. A1) 

where p is the oxygen partial pressure in the lens-corneal system, t is time and x is the 

coordinate for normal cornea, with x=0 in the interface between the anterior chamber and the 

cornea. 

 

The second term on the right-hand side in Eq. A1 is the oxygen consumption as a function of 

the partial pressure, which is absent in the contact lens and tears film regions and follows a 

Monod kinetics form in the corneal system: 
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In Eq. A1, solubility (k) and the diffusion coefficient (D) are considered as a function of the 

position, taking constant values across each of the two regions (CL and cornea) in the system. 

By using the above approach, we could obtain the complete pressure profile, provided that the 

continuity of the pressure is satisfied in the lens-corneal interface. This is automatically satisfied 

within our numerical scheme. 

 

We chose the standard Dirichlet boundary conditions in the spatial coordinate: 
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where Pair is the open-eye pressure, corresponding to the atmospheric pressure, and Pac is the 

oxygen pressure in the anterior chamber.  

 

As for the initial condition, we need to feed the stationary pressure profile in Eq. (1) in order to 

reproduce the evolution of the pressure profile from the closed-eye condition. This stationary 

closed-eye profile can be obtained by solving the steady-state equation: 
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est  (Eq. A4) 

which is obtained from Eq. A1 by removing the temporal evolution. Eq. A4 is subjected to the 

boundary conditions: 

  and  , (Eq. A5) 

where PPC is the contact-lens/palpebral conjunctiva oxygen pressure (PPC=61.4 mmHg).  

 

We then used the solution to Eqs. A4-5 to define: 

  (Eq. A6) 

as the last boundary condition for Eq. A1). 

 

The system of Eqs. A4-5 and Eqs. A1-3 and A6 are solved using FiPy,45 a finite volume PDE 

solver written in Python. Table I shows the different values for the parameters used in the 

numerical solution of the equations. We used a spatial grid with 103 points in all computations 

and time steps of 10-1s for the time-dependent equations. 
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First, Eqs. A4-5 are numerically solved and the resulting profile is used as initial condition for 

Eqs.1-3 and 6. An iterative procedure was used due to the nonlinear nature of the transport 

equations A1 to A6, by “sweeping” the solutions over few iterations (see FiPy manual for details 

http://www.ctcms.nist.gov/fipy). Convergence was reached after the residual was below a 

predefined value (10-11 in our case). We checked both grid size and time step parameters so 

that further decrease in size would not result in any improvement. All the computations were 

performed in a personal computer with an Intel Core i7-3770K under Debian Linux. FiPy version 

3.0 was used in all computations. 

 

Multidimensional parameter optimization subject to bounds was done through the “fmin_tnc” 

function in the Scipy package (http://www.scipy.org/), which uses a Newton Conjugate-Gradient 

method. We used this optimization procedure to determine the optimized values of Q c,max and 

Km parameters in the Monod kinetics model, Q*, Dc and kc in the Larrea et al. model,22 and Q’ 

and k’ in the MMM, for a predefined set of remaining parameters in the model. 


