
APPENDIX A. Ocular-Surface Temperature Physical Model 

 

One-dimensional conservation of thermal energy in the composite cornea of Figure 4 reads  
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where ),( xtT  is the transient absolute temperature in the composite cornea,  is time,  is the 

distance from the back of the crystalline lens to the tear film, and pCk ˆ/    is the thermal 

diffusivity of the composite cornea.  Effective thermal properties k  and pĈ  are estimated from 

the sum of thermal resistances (i.e., / /i i

i

L k L k ) and volume-averaged heat capacities (i.e., 

LCLC ipi

i

ip /ˆˆ
,  ) over the composite cornea of thickness L. ik , Li, i , and ˆ piC  are the 

thermal conductivity, thickness, mass density, and specific heat capacity of ocular material i that 

contributes thermal resistance to the composite cornea (i.e., the crystalline lens, anterior 

chamber, and cornea). Values of thickness, thermal conductivity, and mass density, and specific 

heat capacity for each material are listed in Table A1. 

 

Table A1. Thermal resistance of composite cornea28* 

 

 L [μm] k [W/m/K] ρ [kg/m3] 𝑪�̂� [J/kg/K] 

Crystalline Lens 4000 0.40 1050 3000 

Anterior Chamber 3000 0.58 996 3997 

Cornea 535 0.58 1050 4178 

Overall 7535 0.47 1028 3478 

*L,  k ,   , and ˆ pC  are the thickness, thermal conductivity, mass density, and specific heat capacity of 

the listed ocular material, respectively. 
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Solution of Eq. A1 requires an initial condition and two boundary conditions. Upon lid opening, 

an initial non-uniform temperature profile, ),0( xT , exists across the eye, as illustrated in Figure 

4. For convenience, we approximate the initial temperature profile as pseudo-steady. 
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Remaining boundary conditions include isothermal body temperature behind the lens 

 ( ,0) BT t T  (A3) 

and continuity of heat flux at the ocular surface/environment boundary 
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where ˆEJ  is the area-averaged mass evaporation flux of the tear film  (i.e., the evaporation rate), 

vapĤ  is the specific enthalpy of vaporization of water, ( , ) ( )ST t L T t  is the measured ocular-

surface temperature, and T  is environmental temperature. In Eq. A4, effh  is the effective heat 

transfer coefficient for the parallel processes of natural convection and radiation or 

eff nat radh h h  , where 
nath  and 

radh  are natural-convective and radiative heat transfer 

coefficients, respectively. tear-film evaporation rate enters the problem through Eq. A4 since ˆEJ  

= tear-film evaporation rate. Accordingly, the product ˆ ˆ
E vapJ H gives the evaporative heat loss 

from the cornea. 

 

Analytic solution to Eqns. A1 – A4 by separation of variables46 gives the transient temperature 

profile in the composite cornea as  
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where 
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 tan / 0k k B   , (A7) 

and 1 ( , ) [ ( , ) ] / [T ]BT t x T T         is dimensionless temperature, 

1 (0) [ (0) ] / [T ]S S BT T T      is dimensionless corneal surface temperature at zero time,  

2/t L   is dimensionless time, is dimensionless distance, /effB h L k  is the Biot 

number2,  ˆ ˆ /Δ vap effE BJE H h T T   is an evaporation number defined as the ratio of 

evaporative heat loss to environmental heat loss, and 
k  is the kth eigenvalue in Eq. A7.47 Values 

of 
k  are obtained numerically as discussed below. 

 

Evaluation of the integrals in Eq. A6 and substitution into Eq. A5 with 1  gives the desired 

dimensionless corneal surface temperature as 

  
   

 
 

 
 

2

2

2
1

1 12 1 sin cos
1 exp

1 1 1 sin c
0

os

k k
S S k

k k k k

B E B EB

B BB E

 
    

  





     
       

       
 (A8) 

 

Eq. A8 specifies the corneal surface-temperature decline as a combination of exponential decays 

rather than a single exponential decay.19 
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Eq. A8 strictly holds only when ˆEJ  is constant. If ˆEJ  varies in time because of black spot/streak 

formation and area increase, coupled Eqs. 2 and A8 are solved numerically by Newton iteration 

in Matlab R2010a (The Math Works Inc., Natick, MA). In all cases, we take the first 100 terms 

in the summation of Eq. A6. Eigenvalues, k , in Eq. A14 are obtained numerically by Newton 

iteration and validated against known literature values.47 Finally, to determine human tear-film 

evaporation rate through the tear-film lipid-layer, ˆ
WJ , Eqs. 2 and A8 are best fit by minimizing 

least-square errors to measured dynamic ocular-surface temperatures using only independently 

determined parameters: effh , ˆ
WJ , and a . Briefly, ˆWJ  and effh  are measured as functions of 

temperature from separate in-vitro water-evaporation experiments (see Appendix B).  Then, ˆWJ  

and effh  are held constant in fitting the in-vivo ocular-surface temperature data to Eqs. 2 and A8. 

These two known parameters strictly depend on temperature. However, they are evaluated here 

at the subject-dependent initial tear surface temperature, ( 0)ST t  , since typical temperature 

declines are less than 1 °C (see Figure 3). 

 

Since ocular-surface temperature is many times assumed to decline linearly with time,15 it is 

helpful to consider early-time solution to Eqs. A1 – A4. This task is readily accomplished in 

Laplace space, s, expanded for large s, and inverted by table48 to yield 
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Thus, ocular-surface temperature initially declines as time to the ½ power, not linearly. This 

result holds even when tear evaporation rate is constant since at early time ˆ ˆ
E WJ J . That is, at 



early time there is little to no lipid-layer breakup; all evaporation occurs through an intact, fully 

functioning tear-film lipid-layer. 
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