APPENDIX

Derivation of Equation (1)

The derivation of eq. (1) follows closely the derivation given by Bennett (ref. 2, "Emsley and Swaine’s Ophthalmic Lenses-Vol. 1", pages 205-206, 208-209).

In Fig. A1, O is a point on the optical axis and a distance l from a thin lens of power $F . Q$ is an object point at a height h from O. Lens optical center A is along the line of sight when the eye is looking straight ahead. The image point Q^{\prime} in the lens becomes the object for the eye; it is a height h^{\prime} from the point O^{\prime} on the optical axis. To look at Q^{\prime}, the eye must turn about its center-of-rotation at C, a distance s from the lens, so that the line of sight is now along the line $Q^{\prime} C$ and intercepts the lens at point V, which is at a height v from the object axis.

Figure A1. Derivation of paraxial equations for ocular rotation through a lens.

From similar triangles in Fig. A1

$$
A V / A C=O^{\prime} Q^{\prime} / O C=O^{\prime} Q^{\prime} /\left(O^{\prime} A+A C\right)
$$

or

$$
v / s=h^{\prime} /\left(-l^{\prime}+s\right)
$$

from which

$$
v=s h^{\prime} /\left(-l^{\prime}+s\right)
$$

Replacing distances by the corresponding dioptral terms, i.e. l by the object vergence L, l' by the image vergence L, and s by S, gives

$$
v=-h^{\prime} L^{\prime} /\left(S-L^{\prime}\right)
$$

Since $h^{\prime} L^{\prime}=h L$ and $L^{\prime}=L+F$, this becomes

$$
v=-h L /(S-L-F)
$$

The angle ϕ through which the eye turns from the straight ahead direction to look at Q^{\prime} can be given in prism dioptres by 100v/s. Accordingly,

$$
\begin{equation*}
\phi(\text { in prism diopters })=100 v S=-100 h L S /(S-L-F) \tag{A1}
\end{equation*}
$$

This is similar to Bennett's eq. (13.2).

A prism by itself would form an image of Q^{\prime} in line with Q and O at Q^{\prime}, with the original height altered by q (Fig. A2). Its effect on ocular rotation u (also effective prism power) is, similar to eq. (A1),

$$
\begin{equation*}
u^{\prime}=-100 q L S /(S-L-F) \tag{A2}
\end{equation*}
$$

As the angular deviation produced by the prism is $-q / l$ radians, its prismatic power in prism diopters is

Substituting P for $-100 q L$ in eq. (A2) gives

$$
\begin{equation*}
u^{\prime}(\text { in prism diopters }) \approx P S /(S-L-F) \tag{A3}
\end{equation*}
$$

which is Bennett's eq. (13.6) except for the use of u ' rather than $\Delta \theta$.
To be consistent with the sign convention in this paper, a change of sign is required to give

$$
\begin{equation*}
u^{\prime}(\text { in prism diopters }) \approx-P S /(S-L-F) \tag{1}
\end{equation*}
$$

For a plano prism, $F=0$, and the equation would be

$$
\begin{equation*}
u^{\prime}(\text { in prism diopters }) \approx-P S /(S-L) \tag{A4}
\end{equation*}
$$

Figure A2. Relating to the determination of the component of eye rotation due to a plano prism.

Bennett gave an alternate derivation of eq. (A4). In Fig. A3, C is again the center of rotation of the eye, the axial object point is at O, d is the angle of deviation at the prism, the raypath intercept of the prism is at V, and the angle of eye rotation is $u^{\prime} . l$ and s are the distances from the
prism to the object and to the center of rotation of the eye, respectively. The image point O^{\prime} formed by the prism is displaced a distance q from O. In radians,

$$
d=-q / l
$$

and hence

$$
q=-d l
$$

and

$$
u^{\prime}=q /(-l+s)=-d l /(-l+s)=d S /(S-L)
$$

In prism diopters, d becomes the prism power P to give

$$
u^{\prime}(\text { in prism diopters })=P S /(S-L)
$$

To be consistent with the sign convention in this paper,

$$
\begin{equation*}
u^{\prime}(\text { in prism diopters })=-P S /(S-L) \tag{A4}
\end{equation*}
$$

Figure A3. Relationship between ocular rotation and deviation of a plano prism in near vision.

