Pyrethroids inhibit K_{2P} channels and activate sensory neurons: basis of insecticide-induced paraesthesias

Aida Castellanos^{1,2,3}, Alba Andres^{1,2,3}, Laura Bernal⁴, Gerard Callejo^{1,2,3}, Nuria Comes^{1,2,3}, Arcadi Gual^{1,2,3}, Jonathan P. Giblin^{1,2,3}, Carolina Roza⁴ and Xavier Gasull^{1,2,3}

¹ Neurophysiology Laboratory, Physiology Unit, Department of Biomedicine, Medical School, Universitat de Barcelona, 08036 Barcelona, Spain

² Institute of Neurosciences, University of Barcelona

³ Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain

⁴ Dpto. Biología de Sistemas, Edificio de Medicina Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain.

Abbreviated title: Insecticides inhibit $K_{2P}s$ to activate nociceptors

Supplementary Figure 1: Tetramethrin-mediated Ca²⁺ increase is due to extracellular Ca²⁺ entry and it is independent of Ca²⁺ release from intracellular stores

A. Examples of wild-type mouse DRG sensory neurons stimulated with Tetramethrin (TM, 20 μ M) in nominally Ca²⁺-free conditions and after reintroduction of Ca²⁺ into the extracellular solution. None of the neurons studied in Ca^{2+} -free conditions elicited a response (0 out of 126; 0%). Reintroduction of extracellular Ca^{2+} produced an increase in cytosolic Ca^{2+} in 70 out of 126 neurons (55.6%). Examples of two neurons activated by TM upon Ca²⁺ reintroduction are shown in blue (with an oscillatory pattern) and orange (single Ca²⁺ peak). A TM non-responding neuron is shown in gray. Intracellular calcium was measured by Fura-2 ratiometric imaging as described in methods. **B.** DRG wild-type neurons stimulated with tetramethrin (20 μ M) in the presence of thapsigargin (1 µM) to empty intracellular calcium stores. Neurons were challenged with thapsigargin which was kept in the bath for the whole duration of the experiment. Left: Quantification of the percentage of neurons responding to tetramethrin from a total of 57 cells. Right: Percentage of tetramethrinresponding cells showing an oscillatory calcium pattern or responding with a single calcium peak. **C.** Representative traces of wild-type mouse DRG sensory neurons treated with thapsigargin. Neurons were exposed to tetramethrin (20 μM), menthol (Men, 100 μM), AITC (100 μM), capsaicin (Cap, 1 μM) and KCI (not shown) and intracellular calcium was measured by Fura-2 ratiometric imaging.

С

Supplementary Figure 2: Tetramethrin inhibits TRESK current in

membrane cell patches

Left: Representative recording of a patch clamp recording in the outside-out configuration obtained in a HEK293 cell transfected with mouse TRESK. The TRESK current present in the membrane patch was recorded with a voltage ramp from -100 to +50 mV. Holding current was -60 mV. Solutions used were as described in methods for whole-cell patch clamp (physiological conditions). Tetramethrin (20 μ M) application produced a significant reduction of the current. *Right:* quantification of TM inhibition of TRESK current. **p<0.01 paired student's t-test (n=7 independent patches).

Supplementary Figure 3: TRESK current enhancement by cloxyquin prevents neuronal activation by tetramethrin

A. DRG wild-type neurons stimulated with tetramethrin (20 μ M) in the presence of cloxyquin (50 μ M), a TRESK channel activator. Neurons were pretreated for 5 min and cloxyquin was kept in the bath for the whole duration of the experiment. Left: Quantification of the percentage of neurons responding to tetramethrin from a total of 141 cells. Right: Percentage of tetramethrinresponding cells showing an oscillatory calcium pattern or responding with a single calcium peak. **B.** Representative traces of wild-type mouse DRG sensory neurons pretreated with cloxyquin. Neurons were exposed to tetramethrin (20 μ M), menthol (Men, 100 μ M), AITC (100 μ M), capsaicin (Cap, 1 μ M) and KCI (not shown) and intracellular calcium was measured by Fura-2 ratiometric imaging.

