

THIGHPLASTY PROCEDURE FOR IMPROVED PROSTHESIS FIT AND FUNCTION

Todd A. Kuiken, MD, PhD
Nicholas P. Fey, PhD
Timothy Reissman, PhD
Suzanne B. Finucane, MS, CCRC, PTA
Gregory A. Dumanian, MD

THE CHALLENGE: FAT RESIDUAL LIMBS

Facts

- 2/3 of Americans are overweight
- 1/3 are obese
- Subcutaneous fat is soft.
 - It has low compliance
 - This reduces efficiency and control of this important interface
- · Residual limbs with excess fat are more difficult to fit
 - Hard to pull soft tissues into sockets
 - Hard to grab skeletal structures
 - Distal femur
 - Ischium
- · Residual limbs with excess fat have more complications
 - Pain from tissues hanging over walls
 - Sores from walls not getting into the socket
 - Worse prosthesis control due to compliant interface
- Very few people lose significant amounts of weight

WHY NOT PERFORM SURGERY TO REMOVE EXCESS FAT?

Options:

- -Thighplasty
- -Liposuction

Change the human to better fit the technology.

COMPREHENSIVE CASE STUDY

Pre- and post-thighplasty

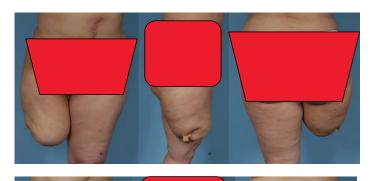
Obese transfemoral amputee

1. Tissue distribution

- MRI
- 2. Socket-limb stiffness
- 2 kinds of sockets tested
- 3. Comprehensive Outcomes
- Clinical, questionnaire, metabolics

TISSUE DISTRIBUTION AND SURGERY

- Patient was an overweight 50-year-old Hispanic female (adjusted BMI of 29)
- Had a right transfemoral amputation over 35 years ago secondary to osteosarcoma
- Tissue removal liposuction (2 liters; 2042 g, 4.5 lbs)
- Tissue removal medial excision (772.5 g, 1.7 lbs)
- Total: **6.2 lbs**



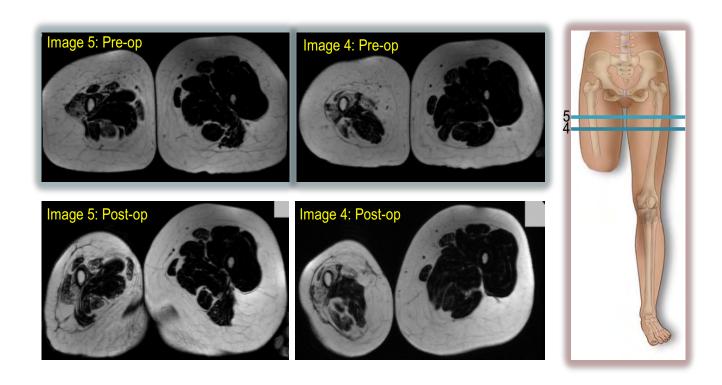
APPEARANCE

Pre

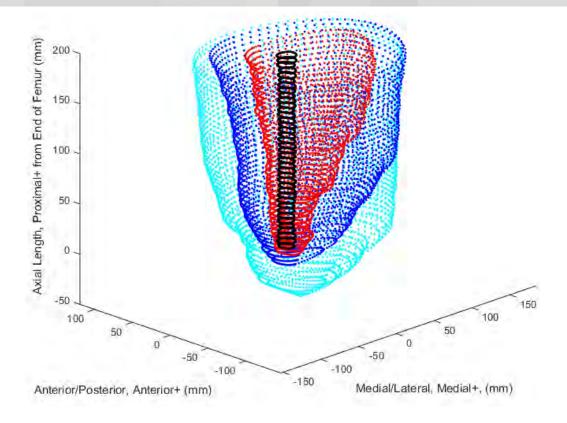
Limb circumference				
proximal	mid	distal		
65	58	54	cm pre	
64	55	47	cm post	

Post

APPEARANCE

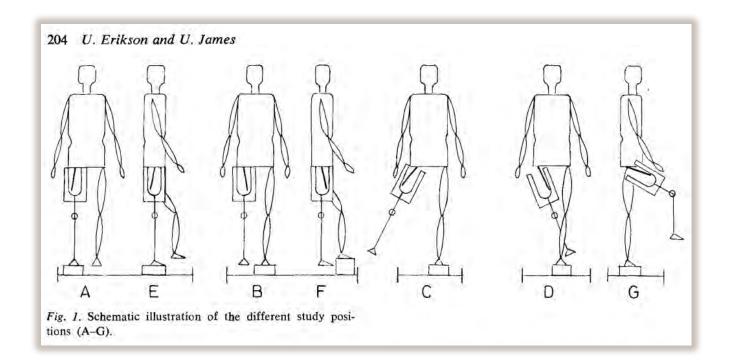


Amputated leg is now smaller than her intact limb, even with her prosthesis on.



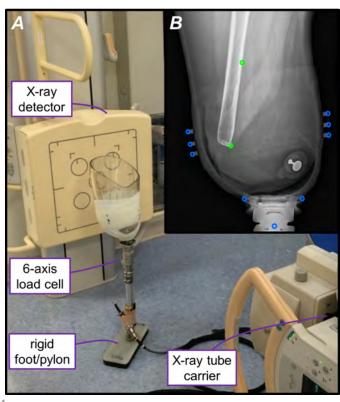
PRE- AND POST-OPERATIVE MRI

INFLUENCE ON TISSUE DISTRIBUTION



CLINICAL OUTCOMES OF PATIENT PRE- AND POST-SURGERY

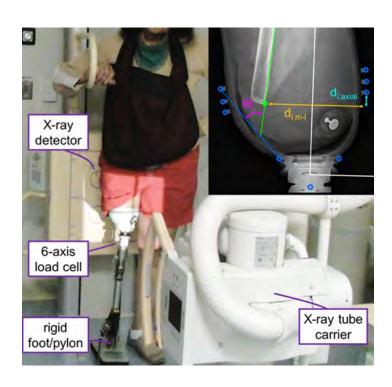
A. Clinical Outcome	Pre- Surgery	Post- surgery	% Improvement
10-Meter Walk Test (comfortable, m/s)	0.76	0.80	+5.3
10-Meter Walk Test (fast, m/s)	1.01	1.01	0
6-Minute Walk Test (ft.)	1202	1339	+11.4
5-times Sit-to-Stand Test (sec.)	17.11	12.88	+24.7
4-Square Step Test (sec.)	9.80	7.73	+21.1
4-Square, half prosthesis inside (sec.)	4.62	3.21	+30.6
4-Square, half prosthesis outside (sec.)	4.78	3.54	+26.1


X-RAY FOR DISPLACEMENT¹

1. Erikson and James 1973

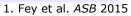
INTERFACE STIFFNESS AND INFLUENCE OF SOCKET GEOMETRY

- Isometric patient loading while weight-bearing
- 6-axis load cell
- Visual feedback of load target
- Compute multi-axis stiffness



1. Fey et al. *ASB* 2015

2. Fey et al. EMBC 2015



INTERFACE STIFFNESS AND INFLUENCE OF SOCKET GEOMETRY

- Isometric patient loading while weight-bearing
- 6-axis load cell
- Visual feedback of load target
- Compute multi-axis stiffness

2. Fey et al. EMBC 2015

FEMUR ORIENTATION

Ischial Containment Containment

Sub-Ischial

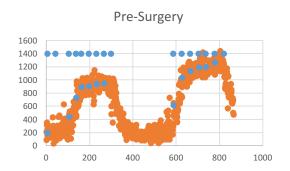
Pre-Op

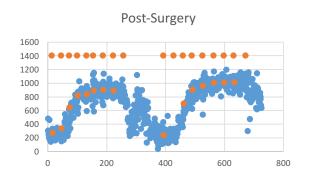
	Isch.	Sub
	Cont.	lsch.
Pre	8.13°	6.81°
Post	4.14°	2.09°

PRE- AND POST- STIFFNESS DATA IN SUB-ISCHIAL SOCKET

	Pre- surgical	Post- Surgical	Units	% Change
Axial	19 (0.81)	28 (2.9)	N/mm	+47.3
Frontal (medial)	160 (6.5)	261 (13)	Nm/rad	+63.1
Frontal (lateral)	610 (38)	545 (38)	Nm/rad	-10.7
Sagittal (anterior)	170 (5.0)	310 (20)	Nm/rad	+82.2
Sagittal (posterior)	470 (20)	502 (13)	Nm/rad	+6.8
			•	

$$K = E \frac{w_b S^3}{6(w_t - w_b)}$$


Potential influence of limb length (S^3) or E?



CLINICAL OUTCOMES AND QUESTIONNAIRE

	Pre-	Post-	% Improvement	
Clinical Outcomes				
10-meter walk test (comfortable, m/s)	0.76	0.80	5.3	
10-meter walk test (fast, m/s)	1.01	1.01	0.0	
6-minute walk test (ft.)	1202	1339	11.4	
5 times sit-to-stand test (sec.)	17.11	12.88	24.7	
4-square step test (sec.)	9.80	7.73	21.1	
4-square, half prosthesis inside (sec.)	4.62	3.21	30.6	
4-square, half prosthesis outside (sec.)	4.78	3.54	26.1	
Patient Questionnaire (1-7, 1=strongly agree, 4=neither agree nor disagree, 7				
strongly disagree)	Pre-	Post-	Change	
Is your socket painful to wear?	3	7	4	
Is your socket easy to put on?	1	1	0	
Are you able to wear your socket for long periods of time?	3	1	2	
Is your socket comfortable while seated?	2	1	1	
Is it easy to go from sitting to standing in your socket?	2	1	1	
Does your socket affect your ability to walk in your home?	3	7	4	
Does your socket affect your ability to walk in the community?	3	7	4	
Does your socket affect the distance you can walk in the community?	1	7	6	
Do you feel you have good control of your prosthesis with this socket?	7	1	6	
Do you feel stable on your prosthesis with this socket?	3	1	2	Shirley Ryan
Do you like the look/shape of your socket?	7	5	2	Abilitylah

METABOLIC AND SPEED OUTCOMES WITH ISCHIAL CONTAINMENT SOCKET

	Pre	Post	Units	% change
E Comfortable	8.20 (2.66)	6.65 (1.33)	mL/min/kg	-18.9
E Fast	11.73 (3.18)	8.03 (1.64)	mL/min/kg	-33.5
COT Comfortable	0.158 (0.05)	0.113 (0.023)	mL/kg/m	-28.5
COT Fast	0.175 (0.05)	0.115 (0.026)	Nm/kg/m	-34.5

	Speed (m/min)
Pre Comfortable	51.9 (2.04)
Pre Fast	67.1 (1.72)
Post Comfortable	58.8 (0.63)
Post Fast	70.1 (2.32)

IMPLICATIONS

DO DATA SUPPORT THE USE OF THIGHPLASTY?

Volume and cosmesis

Fat reduction

Anatomical femur containment

Questionnaire

Walking distance, long distance

Walking speed, short distance

Maneuverability

Sit-to-stand

Stiffness

Metabolics

Yes

Yes

Yes

Yes

Yes

Same

Yes

Yes

For subischial

Yes

FURTHER IMPLICATIONS

- May allow amputees to use sockets they previously could not wear
- Shifts the focus of research from external devices to improving the human residual limb to work with a prosthesis—an area with little research to date
- Procedure may help inform future clinical care for amputees

