
Abstract

This document contains the details of the model used in
the main paper.
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Introduction

Throughout, we consider an entirely heterosexual
population with a mixing matrix of the form:

K ¼ 0 M

W 0

� �
(1)

where M and Ware 2� 2 matrices referring to high- and
low-sexual activity men and women.

In each case, the stable endemic equilibria of the models
were obtained directly by numerically solving algebraic
equations derived from setting all t-derivatives equal to
zero. The proportion of the population in each activity
class at equilibrium was fixed.

In the following two sections we describe the model both
with, and without antiretroviral therapy (ART). We then
describe how we parametrized the mixing; and finally go
on to state our assumptions mortality, infectiousness, and
the effect of ART on these.

Note that a simplified notational scheme was used in the
main text. The correspondence with the scheme used
there is detailed in Table 1.
Model without ART

The model is specified by a set of partial differential
equations (PDEs), where t denotes the time since an
individual has been infected. Ij(t, t) denotes the density of
infectious individuals in class j (the index specifying a
gender, and a sexual activity group) who have been
infected for a time in the interval [t, tþ dt) at time t. An
individual at this stage in their infection is assumed to have
a relative infectiousness given by a function f(t ) and an
excess hazard of death described by a function n(t). The
background mortality rate for disease-free individuals is
denoted m, and the number of susceptible individuals in a
class j is denoted Sj. These quantities obey the dynamics

ṠjðtÞ ¼ BjðtÞ �
X

k

Z
KjkSjðtÞfðtÞ

Ikðt; tÞ
NkðtÞ

dt � mSjðtÞ

ð@t þ @tÞIkðt; tÞ ¼ �ðnðtÞ þ mÞIkðt; tÞ
Ijðt; 0Þ ¼

X
k

Z
KjkSjðtÞfðtÞ

Ikðt; tÞ
NkðtÞ

dt

where Bj(t) is the recruitment rate into a given category j,
and Nj is the total number of infected and susceptible
individuals in category j. The first equation represents the
arrival of new susceptibles in category j, and their removal
due to infection or death; the second represents the
progress of infected individuals through their infection,
being removed at an enhanced mortality rate; and the last
equation is the boundary condition which accounts for
the arrivals of new infections at the point t ¼ 0.
Model with ART

We will assume that, upon infection, a proportion pj of
the Sj move onto an unbarred Ij time-course correspond-
ing to no treatment, and a proportion p̄j ¼ 1� pj (i.e. the
coverage of the intervention) onto the Īj time-course
(with its treatment-modified f̄ and n̄). Thus we have

Ṡj ¼ BjðtÞ � Sj

X
k

Z ðKjkfðtÞIkðt; tÞ þ Kjkf̄ðtÞĪkðt; tÞÞ
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NkðtÞ

dt
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NkðtÞ

dt

It is assumed that f̄ðtÞ and n̄ðtÞ would only depart from
the untreated values, f(t) and n(t), once t reaches the
average time at which treatment begins.
Equilibria

Asymptotically, it follows from the continuity equation
for Ij above that

Ijð1; tÞ ¼ Ijð1; 0Þe�HðtÞ (2)

where H is the cumulative hazard
HðtÞ ¼

R t
0 ðnðtÞ þ mÞ:dt. Writing the next generation

matrix K̄

K̄ ¼
Z 1

0

fðtÞe�HðtÞK:dt (3)
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and the equilibrium prevalences in each group as xj , the
boundary condition above yields the algebraic system

xi ¼ ð1� xiÞ
X

k

K̄ikxk (4)

which can be solved numerically. The incidences at
equilibrium are given by

Iið1; 0Þxi=

Z
e�HðtÞdt

� �
(5)

Notice that although the asymptotic recruitment rates, Bi,
are necessary to determine the sizes of populations, they
do not affect the per-capita prevalences. The reproduc-
tion number R0 is defined as the largest eigenvalue of K̄;
the working for the case with ART follows very similarly.
Mixing

Let n
j
W , with j 2 {H, L}, be the number of women in the

population who are high- or low-class respectively, and
similarly n

j
M, with j2 {H, L}, for the number of high- and

low-class men. Let q
j
i, with j2 {H, L} and i 2 {M, W}, be

the respective average number of partnerships for a given
type of individual during a certain time interval. Let Q be
the total number of partnerships owned by men (or
equivalently by women), i.e.

nH
W qH

W þ nL
W qL

W ¼ Q ¼ nH
MqH

M þ nL
MqL

M (6)

Let

f
j
M ¼

n
j
Mq

j
M

Q
(7)

be the fraction of all partnerships with j-class men, and
similarly. Let

PM ¼ PHH
M PHL

M

PLH
M PLL

M

� �
(8)

be the mixing matrix,comprising of PXY
M : the proportion

of all partnerships which involve an X-class man and an Y-
class woman. Similarly, PXY

W is the proportion of all
partnerships which involve an X-class woman and an Y-
class man. Because partnerships are symmetrically owned,
we have

PM ¼ PT
W (9)

If mixing between the two classes were at random, the
mixing would be

PM
f H
M f H

W f H
M f L

W

f L
Mf H

W f L
Mf L

W

� �
(10)

If mixing were completely assortative, we would have

PM ¼
f H
M 0

0 f L
M

� �
(11)
Linearly interpolating between these two extremes so that
2¼ 1 corresponds to completely assortative mixing and2
¼ 0 to completely random, we get

PMð 2 Þ ¼
f H
M ð 2 þ ð1� 2Þf H

W Þ ð1� 2Þf H
M f L

W

ð1� 2Þf L
Mf H

W f L
MÞð 2 þ ð1� 2Þf L

W Þ

� �
(12)

Note that the transpose condition forces any separate
assortativity parameters for men and women to be
the same.

The proportion of an X-man’s partnerships which are
with class-Y women can be calculated as the

cXY
M ð 2 Þ ¼

PXY
M ð 2 Þ

ðPXY
M ð 2 Þ þPXȲ

M ð 2 ÞÞ
(13)

where Ȳ means ‘‘not-Y’’. Thus

cMð 2 Þ ¼

f H
M ð 2 þ ð1� 2Þf H
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W Þ

� �
(14)

Thus, for a basis in the order (W H, W L, M H, M L),

M ¼ b
qH

Mð 2 þ ð1� 2Þf H
W Þ qH

Mð1� 2Þf L
W

qL
Mð1� 2Þf H

W qL
Mð 2 þ ð1� 2 Þf L

W Þ

� �

W ¼ b
qH

W ð 2 þ ð1� 2 Þf H
M Þ qH

W ð1� 2Þf L
M

qL
W ð1� 2Þf H

M qL
Mð 2 þ ð1� 2Þf L

MÞ

� � (15)

We can therefore determine our choice of next
generation by specifying, e.g.
� q
H
M , qL

M , qH
W , and qL

W , with the interpretation of relative

partner-change
� r
ates in each class.
� F
H
M and FH

W : the fraction of men and women respectively

who are in the ‘H’-class.
� R
L
0 : the value of R0 if the whole population consisted of

‘L’-class individuals.
� 2
: the assortativity.
Other combinations would also be possible. From these
we can calculate the fs by, e.g.

f H
M ¼

FH
MqH

M

FH
MqH

M þ ð1� FH
MÞqL

M

; f L
M ¼

ð1� FH
MÞqL

M

FH
MqH

M þ ð1� FH
MÞqL

MÞ
(16)

and by using the fact that

RL
0 /

ffiffiffiffiffiffiffiffiffiffiffiffi
qL

MqL
W

q
(17)

with the same constant of proportionality as the next
generation matrix.



Table 1. Parameter values for scenarios considered.

Scenario qL
M ¼ qL

W qH
M ¼ qH

W RL
0 FH

M ¼ FH
W
2

Notation in main text p RL
0

(1�u) 2
A 1 1.613 1.1 0.1 0.5
B 1 4.348 0.7 0.1 0.1
C 1 13.111 0.7 0.1 0.9
In practice we took FH
M ¼ FH

W and q
j
M ¼ q

j
W for j 2 {H,

L}, and (without loss of generality) qL
M ¼ qL

W ¼ 1. With
these conventions, and with f normalized so thatR

e�Hf:dt ¼ 1, it is easy to see that RL
0 ¼ b. We also

adjusted the q so as to standardize the equilibrium
incidence at 0.015 persons per person per year. The
parameters used for the scenarios were therefore those
given in Table 1.
Figure 2. Incidence rate (per 100 person-years at risk) over
time following the start of a Test and Treat intervention (ART
starting 1 year after infection). The intervention starts in year
10 and reaches 80% coverage by year 20, and the lines show
the impact of the intervention on incidence in each of the
three scenarios A (solid line), B (dashed line) and C (dotted
line). The rebounds in incidence are due to the first cohorts
on treatment failing simultaneously, which would be dam-
pened in reality by variance in survival times on treatment
(although this does not affect the eventual reduction in
incidence).
Infection profiles and the effect of
treatment

Untreated individuals were assumed to live for 11 years
after infection (i.e. a step-function survival distribution)
and follow the infectious profiles as given in [1] as shown
in Fig. 1(a). Individuals started on ART time t after their
infection are assumed to live an extra E(t) ¼ 2:5(11 � t)
years (step-function survival distribution) : i.e. more than
25 years if treatment is started promptly, with a linearly
decreasing return until 11 years when individuals are
assumed to have died. The length of the acute and _nal
phases are assumed unchanged, and the extra life is
achieved by a longer set-point phase. ART introduced at
time t is assumed to bring the infectiousness down to r% of
the untreated level, until the last 0.75 years of life when
Figure 1. Without ART, individuals are assumed to go through 3 p
introduced at time t, individuals are assumed to live an extra E(t) U
the untreated set-point level until the last 0:75 years of life.
the infectiousness is the same as the last 0.75 years of life
without treatment. The choice of value for r is discussed
in the main paper. This is shown schematically in
Fig. 2(b). In the small region of parameter space where
hases of infectiousness before dying after 11 years. If ART is
2:5M (11 S t) years from then, with an infectiousness of r% of



the extra period of life achieved is less than 0.75 years, the
infectiousness in the final stage is assumed to be at a lower,
so that it has the same total weight as the same (shorter)
stage without treatment.
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