
Appendix: Model technical details

Microsimulation model

The microsimulation began by generating baseline
characteristics for all individuals, with distributions based
on data observed in individuals infected with HIV in
British Columbia (BC). These characteristics included
demographics as well as random effects for each of the cost
models and frailty terms for the resistance model. The
random effects for the cost models represented an
individual’s tendency to utilize particular health services,
above and beyond what would be described by the
covariates included in the cost models (i.e. CD4 cell
count, adherence, treatment status, demographics).
Similarly, the frailty terms for the resistance model
described an individual’s tendency to develop medication
resistance beyond what would be expected based on their
adherence to HAARTand other variables included in the
resistance model. An additional variable that was
generated at the outset of the microsimulation was the
expected time following infection at which an individual
was expected to present for CD4 monitoring. This was
assumed to follow a uniform distribution on 0–10 years,
which was chosen based on the observed initial CD4 cell
counts in treated individuals in BC. It was further
assumed that after an individual presented for CD4
monitoring, they would initiate treatment with HAART
once they were considered clinically eligible, with
eligibility based on a CD4 cell count below 350 cells/
mm3.

The microsimulation then proceeded by moving
forward in one-month time cycles. At each time step,
CD4 cell count and viral load were updated. Treatment
uptake in the upcoming month for individuals not yet
receiving HAART was determined based on their CD4
cell count and whether or not they had presented for
monitoring.

Resistance mutation development was randomly deter-
mined assuming probabilities based on the Weibull frailty
model. It was assumed that if an individual initiating an
non-nucleoside reverse transcriptase inhibitor (NNRTI)-
based regimen developed an NNRTI resistance mutation,
they would switch to a protease inhibitor (PI)-based
regimen, and remain on PI-based regimens for the
remainder of their life, due to the increased likelihood of
cross-class resistance to NNRTIs. Similarly, individuals
who started on a PI-based regimen were assumed to
switch to an NNRTI-based regimen if they developed PI
resistance, and to switch back to a PI-based regimen if
they subsequently became resistant to NNRTIs. The
distribution of times associated with these regimen
switches were estimated based on empirical data and
accounted for in the frailty model.
Monthly costs associated with the various health services
categories (hospitalizations, outpatient visits, laboratory
tests, emergency room visits and medications) were then
generated. These costs were generated based on a series of
random effects models that were fit using comprehensive
health services data. For a population-based cohort of
1,895 individuals infected with HIV, data were available
describing all charges associated with physician visits and
days spent in hospital. In addition, for all individuals
receiving treatment for HIV in BC, all prescription
records and laboratory tests were available. These data
were converted to longitudinal data series with a person-
month unit of analysis and this longitidinal dataset was
used to fit a series of two-stage random effects statistical
models which were then used to predict costs within the
microsimulation. The first stage random effects models
were used to determine the probability of non-zero
utilization for each of the categories, and random
numbers were generated to determine which individuals
would utilize each of the categories during the upcoming
month. Conditional on non-zero utilization to a
particular health services category, the second stage
random effects model was used to estimate the expected
log-cost associated with that category for the upcoming
month. The expected log-costs calculated using the
second stage models were treated as point estimates
associated with normally-distributed random variables.
Actual log-costs were then randomly sampled from
normal distributions with mean and standard deviation
equal to the point estimate and the residual standard error
of the second stage model, respectively. Finally, these log-
costs were transformed back to the original cost scale
using the Duan smearing factor.

Survival throughout the upcoming interval was randomly
determined based on a Cox proportional hazards model.
For individuals who died during the upcoming one-
month interval, the amount of time they contributed to
the interval prior to death was sampled from a uniform
distribution, and the final month-of-life indicator was
included in the cost models to reflect the increase in
expected costs associated with this interval.

In the sensitivity analysis, all coefficients of the statistical
models (costs, resistance, survival) were randomly
generated based on the covariance distributions defined
by the model-fitting process. Further information
regarding the microsimulation or individual statistical
models can be obtained by contacting the authors.

Transmission model structure

The transmission model structure is shown in Appendix
Figure 1. Simulated time moved forward in one-month
intervals, during which individual disease histories and
resource utilization profiles were updated within the



microsimulation, and new infections were estimated
using a series of difference equations. Newly- infected
individuals were then added to the cohort being followed
within the microsimulation, and their disease trajectories
and resource utilization were simulated prospectively. As
individuals died within the microsimulation process they
were removed from the cohort. The pool of susceptible
individuals varied over time as individuals migrated in or
left due to death or infection. This process was repeated at
monthly intervals throughout the entire simulated time
period. Discrete-time difference equations were used in
place of continuous-time differential equations because
the model was structured to ‘‘stop’’ at each one-month
time interval and calculate new infections based on the
distribution of clinical variables determined by the
microsimulation. The difference equations described a
process in which susceptible individuals became infected
at a rate determined by the respective numbers of
susceptible and infected individuals, the distribution of
viral load amongst infected individuals, the baseline level
of risk behaviour observed in the population, and any
decrease in risk behaviour due to increased viral load.
Mathematically, the equations are expressed:
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In this notation, t is measured in days, St refers to the
number of susceptible individuals at time t, It

(j) refers to
the number of individuals in viral load category j at time t,
b0 is the baseline population force of infectivity, g(j) is the
increase in infectivity associated with viral load category j,
d(j) is a dampening of the increased infectivity associated
viral load category j due to a decrease in risk behaviour,
N is the total number of individuals in the population
(susceptible and infected), l is the net migration into
the susceptible population accounting for migration in
and out and mortality (note that l could be positive
or negative, depending on migration patterns), and mt

is the mortality rate of infected individuals at time t,
which varies according to the disease stage distribution at
time t. The viral load categories considered were: primary
infection during the 60 days following seroconversion
(I [0]); viral load below 3 log copies per mL (I [1]), viral
load in the interval [3,4) log copies per mL (I(2)), viral load
in the interval [4,5) log copies per mL (I [3]), and viral
load greater than or equal to 5 log copies per mL (I [4]).
Category I [1] was taken as the baseline category, so g [1]
and d [1] were both defined to be 1, meaning that
individuals in this viral load category represent the
baseline level of infectivity and risk behaviour. For
increasing viral load categories, it was assumed that an
increase of 1 log copy/mL was associated with a 2.45-fold
increase in infectivity [13] and a 10% reduction in risk
behaviour, based on the assumption that viral load could
be used as an acceptable proxy for morbidity. This
decrease in risk behaviour was varied in the sensitivity
analysis. It was further assumed that during the period of
primary infection, viral load reached a level of 6 log
copies/mL with no reduction in risk behaviour.

In order to reduce model complexity, we assumed a single
baseline infectivity parameter (b0), and did not differen-
tiate between different routes of transmission (e.g. men
who have sex with men, injection drug use, sex trade
work). Thus, b0 can be viewed as implicitly incorporating
the relative sizes of different risk groups, and the level of
risk behaviour and risk of transmission associated with
each risk group. It is unlikely that b0 is actually static, as
the relative size of risk groups and the behaviour of
individuals change over time. However, we made the
simplifying assumption that the b0 parameter would
remain constant over the simulated time period. We do
not expect that this parameter uncertainty in b0 had a
major impact on model results. Within this study, it was
not our objective to exactly replicate transmission
patterns observed in BC or predict the specific number
of infections to be expected in upcoming years. Rather,
we wished to evaluate the difference in outcome between
two treatment strategies in the context of a mature,
concentrated epidemic consistent with that observed in
BC. Because our primary outcomes were incremental in
nature and all comparisons used the same parameter
estimates, it was unlikely that any incorrect assumptions
regarding specific parameter values would have biased
overall results in either direction.

Net Benefit

The primary outcome of the model was the incremental
net benefit (INB), which is defined as:

INB ¼ lDQALY �DCost

In the above formula, DQALY refers to the difference
across scenarios in quality-adjusted lifeyears, DCost refers
to the difference across scenarios in total costs, and l refers
to the societal willingness-to-pay for an additional
quality-adjusted life year, assumed here to be $50,000.

Another commonly-usedmetric in health economics is the
incremental cost-effectiveness ratio (ICER), defined as:

ICER ¼ DCost

DQALY

Using the ICER metric, a scenario can be considered cost-
effective if the related ICER is below a pre-specified
willingness-to-pay threshold l.[43] Noting the relation-
ship between the INB and ICER formulas, for a given
value of l, a cost-effective ICER is equivalent to an INB
>0.



Appendix Figure 1: Schematic of model structure.
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Appendix Table 1: Parameters associated with transmission model.

Parameter Description Point estimate

Distribution used in probabilistic
sensitivity analysis/ Corresponding
95% Confidence Interval (CI) Source(s)

S0 Susceptible population at baseline 15,000 Normal (s=2,000) 95% CI:
(11,080–18,920)

� Assumption

b0 Baseline force of infectivity (associated
with viral load of 3 log copies/mL)

0.02 Beta (a=15.66, b=767.34)
95% CI: (0.011–0.031)

� Empirical calibration [26]

� Beta distribution parameters
estimated using method of moments
assuming standard deviation of 0.005.

g(j) Increase in infectivity associated with viral
load category j relative to baseline

2.45 per log increase Normal (s=0.15) 95% CI:
(2.16–2.74)

� Quinn et al. [13]

d(j) Decrease in risk behaviour associated with
viral load category j relative to baseline

0.10 per log increase
(excluding primary
infection)

Beta (a=0.8, b=7.2) 95%
CI: (0.001–0.367)

� Assumption

� Beta distribution parameters estimated
using method of moments assuming
standard deviation of 0.10.

l Net annual migration into susceptible
population (accounting for mortality)

500 Normal(s=100) 95%
CI: (304–696)

� Empirical calibration

mt Mortality rate at time t. Dependent on disease
stage and age distribution
and treatment history of
simulated population.

N/A � Untreated: Babiker et al.[25]

� Treated: Cox proportional hazards
analysis of British Columbia data.
� Non-HIV related: British Columbia

age-specific mortality. [44, 45]
Viral load

set point
Baseline viral load (assumed to

increase by 0.1 log-copies per year)
4 log-copies Normal(s=0.5) 95% CI:

(3.02–4.98)
� Fraser et al.[24] British Columbia data


