
METHODS Appendix

This appendix provides a detailed description of the
methods used in the article Cost-Effectiveness of
Antiretroviral Regimens in the World Health Organiz-
ation’s Treatment Guidelines: A South African Analysis
(Bendavid, et al.)
Overview

We developed a simulation model of HIV disease that
followed the natural history of HIV-infected individuals
from the time of presentation to care until death. Taking a
societal perspective, the model follows the costs and
benefits of five treatment strategies in sub-Saharan Africa
(four recommended by the World Health Organization –
WHO – and the ART combination in most common use
in sub-Saharan Africa). The model estimates discounted
and undiscounted quality-adjusted life expectancy from
the time of presentation to care until the end of life in
2009 US dollars. The comparative value of alternative
treatment strategies is expressed in terms of incremental
cost-effectiveness ratios of each strategy compared with
the next less effective strategy.
Model structure

The model follows patients in one month intervals from
the time at which they first make contact with the
medical system for their HIV infection until death. Figure
1 shows a schematic flow diagram of patient care tracked
in the model. At presentation and at each clinic visit,
patients who are not on ART are evaluated whether they
meet criteria to start ART. ART is initiated when CD4
cell count drops below 350 cells/ml, as suggested in the
recent WHO guidelines. Patients who are on first-line
ART also arrive to the clinic in regular intervals, and are
evaluated for continued efficacy and possible toxicities of
first-line ART. Patients are switched from first-line ART
to second-line ART for two reasons: suspected treatment
failure (by immunologic or clinical criteria) and drug
toxicity severe enough to necessitate a change in regimen.
Patients on second-line ART are also evaluated at regular
intervals for signs of medication toxicity and treatment of
opportunistic diseases (ODs). Second-line treatment is
stopped in patients who have severe medication toxicity
or are otherwise unable to tolerate the medications.
However, patients who are on second-line ARTand have
evidence of virologic failure are maintained on ART due
to the independent survival advantages of non-suppres-
sive regimens compared with ART cessation.[1, 2]
Patients may present at any clinical stage of disease and
with any laboratory parameters. That is, on entry, a
patient may or may not be ill with an opportunistic disease
and may have any CD4 count or viral load. The
distribution of CD4 counts at entry was taken from
published cohort studies in the Cape Town region, and
their risk of presenting with an OD was dependent on
their CD4 count at presentation.[3, 4] Individuals with
CD4 counts under 350 cells/ml are placed on treatment at
the beginning of the simulation. Those with higher CD4
counts are observed until their CD4 count dropped
below the threshold; in practice, very few individuals
present with CD4 counts higher than 350 cells/ml. We
assume that no patients have transmitted drug resistance
(TDR). Although TDR does impact the treatment
efficacy of NNRTI-based regimens, the rates of TDR
reported from areas of Africa using the consensus
definition of TDR have generally been low and thus
are unlikely to have a major impact on treatment efficacies
beyond the observed rates of virologic failure.[5, 6]
Estimated rates of virologic suppression for each regimen
are displayed in Table 1.

The model evaluates all patients in one month
intervals. While the model tracks all patient parameters
including CD4 count, viral load, ART regimen,
medication toxicities, and development of ODs –
most parameters are only available to providers
during regular clinic visits. That is, while the model
tracks an individual’s health status monthly, that
patient’s data is only available for treatment decisions
if it is measured and if that patient presents to clinic
that month.

If a patient experiences a severe OD, we assume they
present for acute medical care rather than to a routine
clinic visit that month. The risk of developing a severe
OD was dependent on the current CD4 count. We
calculated the risk of a severe OD based on the risk of
developing most WHO Stage 4 diseases (CMV infection,
cryptococcal meningitis, Toxoplasmosis, Pneumocystis
pneumonia, extrapulmonary TB, wasting, esophageal
candidiasis, and chronic diarrhea) plus the risk of
pulmonary TB based on experience in Cape Town.[3,
4, 7] We used data from patient cohorts that received co-
trimoxazole prophylaxis.

A patient’s risk of death from an OD is proportional to the
CD4 count at the time of illness. The costs incurred
reflect care for the OD. If a patient survives the acute
illness, he/she returns to routine care. Patients were
followed until death from HIV or other causes (back-
ground age-specific mortality rate).[8–11] Thus, we
follow the lifetime costs and benefits of HIV care delivery
for a group of simulated patients using clinical and
utilization data of cohorts.



Disease progression

We follow the disease progression of patients from the
time of presentation based on the following parameters:
age, CD4 count, viral load, ART regimen, ART
duration, history of OD, virologic failure, and
medication toxicity. We monitored all parameters for
all patients monthly, but the information was only
available to providers every 6 months or sooner for
acute clinical events (such as onset of an OD or
medication toxicity).

Upon entry to care, each patient is assigned an initial
CD4 count, viral load, and age from a distribution that
is calibrated to Cape Town study cohorts.[4, 12–14]
Each patient’s risk of clinical events is determined by
his/her CD4 count. The CD4 count was modeled as a
continuous variable that varied based on the viral load,
ART, and occurrence of treatment failure. In patients
whose viral load was not suppressed, the rate of CD4
decline was determined by their current CD4 count
and viral load.[15, 16] Given the uncertainty about
the exact relationship between viral load and CD4
change, we allow two non-linear determinants of CD4
decline: random variability that loosens the correlation
between viral load and CD4 count decline, and a
slower rate of CD4 decline, both guided by published
data.[15–17]

Once a patient is started on a successful first-line ART
regimen, his/her CD4 rises to a peak that depends
primarily on the CD4 count at the time of treatment
initiation. While some data support an age-related effect
of CD4 rise, the strongest reproducible predictor of CD4
rise on effective ART is the CD4 count at the time of
treatment initiation.[18–21] Published data on CD4 rise
were extracted using the graph digitizing program
DigitizeIt v.1.5.8 (Braunschweig, Germany), and
monthly CD4 increments were determined based on
time elapsed from treatment initiation.

The principal activity of ART is suppression of viral
replication, and we use viral suppression to undetectable
levels as the principal marker that allows CD4 to rise
after treatment initiation. While on successful treatment,
viral load is undetectable at a threshold of less than
400 copies/ml.

Treatment failure is modeled as failure to suppress
virologic replication and a return of the viral load to
detectable levels. Patients with virologic failure who are
continued on ART have a lower viral ‘‘set point,’’ and
their rate of CD4 decline is consequently slower.[2]
Clinically, virologic failure is inferred through CD4
monitoring, and we use immunologic criteria outlined in
the WHO guidelines and recent clinical trials – a drop to
a CD4 count of less than 100 cells/ml – to estimate timing
of virologic failure and the need to switch to second-line
therapy.[7, 22, 23]
Treatment strategies

Regimens
We compared the effectiveness and costs of five
alternative ART first-line regimens (four recommended
by the WHO and the ART combination in most
common use in sub-Saharan Africa):
(1) T
enofovirþ lamivudineþ efavirenz
(2) T
enofovirþ lamivudineþ nevirapine
(3) Z
idovudineþ lamivudineþ efavirenz
(4) Z
idovudineþ lamivudineþ nevirapine
(5) S
tavudineþ lamivudineþ nevirapine
All the regimens have a similar purpose – to suppress viral
replication and enable immunologic recovery – but they

differ substantively on two primary domains: success rates

of achieving virologic suppression and their respective
toxicity profile. Table 1 shows the estimates of each
regimen’s rates of virologic suppression and toxicity
profile used in the model.

Virologic suppression
We estimate rates of virologic suppression from com-
parative trials. Using data from clinical trials performed
mostly in developed country settings raises questions
about generalizability to an African setting. We use this
data for two primary reasons. First, it is the best available
comparative data for these regimens. Literature with
estimates of virologic suppression from uncontrolled
cohorts suggests that data are scant and unreliable, as it
fluctuates widely within regimens based on the patient
population, virologic assay, and case definitions for
virologic failure. Second, recent literature suggests that
suppression rates are similar between subtype B and non-
subtype-B, despite the genotypic differences, supporting
observations that ART effectiveness is similar between
developed and developing settings.[24]

We rely heavily on two long-standing clinical trials in
establishing rates of virologic suppression. One compares
regimens containing tenofovir to regimens containing
stavudine, while the other compares regimens containing
tenofovir to regimens containing zidovudine.[25, 26]
Those studies show that tenofovir and stavudine are
similarly efficacious, while tenofovir is more efficacious
than zidovudine. Since both studies were performed
using a similar protocol with the same group of
investigators, we assume by transitivity that stavudine is
more efficacious than zidovudine. Both studies use
efavirenz as the NNRTI of choice. We estimated the rates
of virologic failure with nevirapine were about 1.5 times



higher than those with efavirenz, based on several studies
that suggest a consistent estimate of efavirenz’s superior
ability to maintain viral suppression in combination with a
variety of NRTIs.[27–31]

Toxicities and regimen changes
We include the effect of seven dominant toxicities
associated with ART: lipoatrophy, renal failure, anemia,
hepatotoxicity, myocardial infarctions, peripheral neuro-
pathy, and lactic acidosis. While other toxicities are
known to be associated with ART, we chose to examine
those toxicities that are most common and significant in
terms of their effect on quality of life. Where possible, we
estimate the types of toxicities and incidence rate for each
regimen from long-term follow-up studies of clinical
trials.[26, 32, 33] We use these sources because of the
strict case definitions and careful monitoring. Where
clinical trial data was not available, we use African
observational data.[30, 34–37] In particular, we rely on
cohorts that identify toxicities that led to regimen change
as the clinically relevant endpoint. For a few toxicities we
rely on observational data from non-African cohorts.[38,
39] Table 1 shows the toxicities associated with each
regimen and 1-year frequency of each toxicity. The
cumulative risk of all the toxicities except for lipoatrophy
plateaus after a year, and individuals on regimens
associated with each toxicity who remain on the regimen
for at least a year without experiencing the toxicity are no
longer at risk. The most common toxicity, associated with
all the regimens, is lipoatrophy. It occurs most frequently
with stavudine-based regimens and least frequently with
tenofovir-based regimens. We estimate a declining rise in
the risk of lipoatrophy up to three years, when the
cumulative risk plateaus.

Therapeutic decisions following toxicities aim to mini-
mize the risk of future toxicity burden. Practically, most
toxicities that are associated with zidovudine or stavudine
prompt a switch to a tenofovir-containing regimen. Most
toxicities associated with nevirapine prompt a switch to
an efavirenz-containing regimen. The main exception is
renal failure with tenofovir, which prompts a switch to a
zidovudine-containing regimen. These therapeutic de-
cisions are shown in Figure 1 of the main manuscript.
These regimen substitutions with toxicities are based
primarily on the WHO formulary.

Consistent with WHO guidelines and with standard
practice in many parts of sub-Saharan Africa, we modeled
a second-line ART for those who experience toxicities
on multiple first-line regimens or who are thought to fail
first-line ART. Second-line ART included a combination
of NRTIs that depended on the initial regimen and a
boosted protease inhibitor.[7]

Benefits and costs
Benefits are measured in life years (LYs) and quality-
adjusted life years (QALYs) from the time of presentation.
We compared both discounted and undiscounted life
years and QALYs among the various treatment strategies.
Where possible, we used quality of life estimates from the
same clinical trials that reported the toxicity incidence.
We had this information for neuropathy. We use a study
on switching from stavudine to tenofovir in South Africa
for most other quality of life estimates. That study, in turn,
uses a general quality of life catalog to estimate many of
the associated weights. Because of the uncertainty
associated with the QALY weights, and their importance
in shaping the results, we varied the quality of life weight
estimates for each toxicity widely (Table 2 in main
manuscript).

We consider direct costs of care from a societal perspective
in this study. We included the costs of inpatient care,
outpatient care, provision of ART, laboratory monitor-
ing, and treating toxicities. Inpatient and outpatient clinic
costs are taken from a detailed costing study of HIV care
in South Africa.[40, 41] The differences in cost of care
between South Africa and other sub-Saharan countries
poses a legitimate concern to the study’s generalizability.
Consequently, we varied the costs widely based on
measured variations in cost of medical care provided in
the WHO-CHOICE database.[42]

We obtained the cost of each regimen from the WHO
Global Price Reporting Mechanism database.[43] That
database provides price data of antiretroviral drugs
obtained directly from national AIDS programs and
other major purchasers, and publishes detailed transac-
tional information, including quantities purchased,
dosages, and the amount paid. Some antiretroviral drugs
have fixed-dose combinations, which generally reduce
the price of the regimen. For example, staduvine,
lamivudine, and nevirapine come in a fixed-dose
combination, as do zidovudine and lamivudine. Regi-
mens with fixed-dose combinations are cheaper than
regimens with the individual drugs procured indepen-
dently. We obtained the lowest price for each regimen
reported in the Global Price Reporting Mechanism for
South Africa in 2008. Notably, the prices of all ART
regimens converged in sub-Saharan Africa by 2008, and
the prices paid for ART were nearly identical between
South Africa and other African countries.[44]

Sensitivity analysis
Our sensitivity analysis includes several one-way and
multi-way analyses, as well as a probabilistic sensitivity
analysis. The uncertainty bounds for each parameter are
shown in Table 1 of the main manuscript. We pay
particular attention to those data elements for which we
have less certainty and which change significantly
between alternative strategies. These include the rates
of failure, toxicity rates, quality of life weights with
toxicities, and cost of the antiretroviral agents. We
perform a probabilistic sensitivity analysis where we vary
all the variables simultaneously and repeat the analysis



1,000 times. Each variable is drawn from a probability
distribution and the entire analysis is re-run. Probabilities
for events or health states were sampled using beta
distributions with alpha and beta parameters determined
by the point estimate (mean) and variance; and costs were
sampled using gamma distributions with the mode at the
point estimate. Beta distributions are defined by two
shape parameters, a and b, that were estimated for each
variable to approximate the mean and variance as follows:

a ¼ ðm2 � m3 � ms2Þ=s2

b ¼ ðm� 2 m2 þ m3 � s2 þ ms2Þ=s2
Figure 1: Model flow of routine patient care management

Squares represent states or processes, and diamonds represent deci
seen in clinic, and evaluated whether they meet criteria to start ART
they do not meet criteria, the model evaluates them again next mont
events such as severe opportunistic diseases or some medication

Table 1 Study strategies and associated virologic efficacy and

Initial regimen
Virologic failure
at 1, 2, and 3 years One-year risk of toxicitie

1 TDFþ3TCþ EFV 1 year – 12%[25]
2 year – 20%[45]
3 year – 24%[32]

Lipoatrophy – 6% (3–9%
Renal failure – 1% (0–2
Myocardial infarction (M

(0%-0.2%)[25, 26, 46]
2 TDFþ3TCþNVP 1 year – 18%[25, 29, 30]

2 year – 36%[29, 30, 45]
3 year – 31%[29, 30, 32]

Lipoatrophy – 6% (3–9%
Renal failure – 1% (0–2
MI – 0% (0%-0.1%)[25,
Hepatotoxicity – 6.3% (4

3 AZT þ 3TC þ EFV 1 year – 17%[25]
2 year – 26%[45]
3 year – 31%[32]

Lipoatrophy – 23% (15–
Anemia – 6% (4–8%)[25
MI – 0.2% (0.1%-0.3%)[

4 AZTþ3TCþNVP 1 year – 25%[25, 29, 30]
2 year – 39%[29, 30, 45]
3 year – 46%[29, 30, 32]

Lipoatrophy – 23% (15–
Anemia – 6% (4–8%)[25
MI – 0.1% (0%-0.2%)[2
Hepatotoxicity – 6.3% (4

5 d4Tþ3TCþNVP 1 year – 18%[26, 29, 30]
2 year – 36%[26, 29, 30]
3 year – 31%[26, 29, 30]

Lipoatrophy - 30% (20–4
MI - 0.3% (0.1%-0.5%)[2
Peripheral neuropathy -
Lactic acidosis - 0.5% (0
Hepatotoxicity – 6.3% (4
Gamma distributions are defined by a shape and scale
parameters, k and u:

k ¼ m2=s

u ¼ s=m

This allows us to estimate the confidence in our results if
the true value of each variable is anywhere within the
uncertainty bounds shown. For example, we estimate the
likelihood that a strategy which appears dominant in the
base case – one which is more effective and less costly
than another strategy – may not be dominant.
sion nodes. For example, newly diagnosed HIVþpatients are
. If they meet criteria, they are started on first-line ART, and if
h. The model does not show the development of acute clinical
toxicities, which may occur at any time.

toxicity profile

s Management following toxicity

)[33] Lipoatrophy – no change
%)[26] Renal failure – switch to AZTþ3TCþEFV
I) – 0.1% Non-fatal MI – no change

)[33] Lipoatrophy – no change
%)[26] Renal failure – switch to AZTþ3TCþEFV
26,46,47] Non-fatal MI – no change

–8%)[35] Hepatotoxicity – switch to TDFþ3TCþEFV
30%)[32,33] Lipoatrophy - switch to TDFþ3TCþEFV
] Anemia - switch to TDFþ3TCþEFV
25, 46] Non-fatal MI - switch to TDFþ3TCþEFV
30%)[32,33] Lipoatrophy - switch to TDFþ3TCþNVP
] Anemia - switch to TDFþ3TCþNVP

5,46,47] Non-fatal MI - switch to TDFþ3TCþNVP
–8%)[35] Hepatotoxocity – switch to AZTþ3TCþEFV
0%)[26,33,36] Lipoatrophy - switch to TDFþ3TCþNVP
6,46,47] Non-fatal MI - switch to TDFþ3TCþNVP

25% (15–35%)[34,37] Peripheral neuropathy - switch to TDFþ3TCþNVP
.1–1.5%)[38,39] Lactic acidosis - switch to TDFþ3TCþNVP
–8%)[35] Hepatotoxicity – switch to AZTþ3TCþEFV
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