Appendix I: Description of the data sources 

The Virolab database was created as part of the ViroLab project (http://www.virolab.org/about-virolab.html), and contained resistance information as well as clinical and demographic data from patients who had a HIV genotypic resistance test done during routine clinical care in four different European clinics (Tropical and Infectious Diseases clinic, University of Brescia (Italy); Catholic University of the Sacred Heart in Rome (Italy); Hospital Germans Trias i Pujol, Foundation IrsiCaixa of Barcelona (Spain); University Hospitals Leuven, Catholic University of Leuven (Belgium)). The EuResist integrated database (http://engine.euresist.org/database/) included clinical, demographic and sequence data collected in Italy (ARCA database), Germany (AREVIR database), Sweden (Karolinska Infectious Diseases and Clinical Virology Department), Luxembourg (Retrovirology Laboratory, CRP-Santé), Portugal (Instituto de Higiene e Medicina Tropical) and Russia (Ivanovsky Institute of Virology). In order to avoid duplicates, patients from Catholic University of the Sacred Hearth included in the ARCA database were excluded from the merge. The EuroSIDA cohort includes over 18,000 individuals living with HIV followed at 100 clinics in 35 countries.  A full list of EuroSIDA participating clinics can be found at http://www.chip.dk/Ongoing-Studies/EuroSIDA/About. The study collects data on a large number of variables, including demographic information, treatment, CD4 counts and VL measurements. Results from resistance tests done as part of routine clinical care are submitted by the treating physicians, and the study also holds the results from resistance tests done retrospectively using prospectively stored plasma samples.  

Appendix II: Drug resistance mutations classification and mutations selection process
Two different lists for drug resistance classification were used: 
(i) Surveillance DRM (SDRM) from the WHO  2009 list of mutations for surveillance of transmitted drug resistance, and 
(ii) a wider list of treatment-associated DRM, including all substitutions listed as changes conferring resistance in at least one of the four main resistance classification systems: ANRS, IAS, Stanford HIVdb and Rega. Each DRM was categorized according to the drug class to which it conferred resistance (NRTI, NNRTI and PI). 

Because minor compensatory mutations, particularly in the protease (PR) gene, are also likely to influence the fitness of a given strain we also selected non-polymorphic PR mutations associated with PI exposure but not necessarily with drug resistance manually from the Stanford HIVdb according to the following rules: 

(1) Non-polymorphic PR mutations with a prevalence of <1% among treatment naïve patients in the publicly available Stanford/HIVdb sequence database

(2) Non-polymorphic PR mutations with a prevalence of >1% among PI experienced patients in the Stanford/HIVdb sequences database

(3) Non-polymorphic PR mutations with a prevalence among PI experienced patients at least twice that among treatment naïve patients. 

The aim of the first rule was to exclude polymorphic PR mutations. Although similar to the approach used to determine the WHO list of SDRM, the use of a 1% threshold and the extention of the selection process to all substitution, not only those associated with drug resistance, makes it slightly broader than the WHO Surveillance list, which uses a 0.5% threshold and is limited to the mutations recognized as causing or contributing to drug resistance. This allowed the inclusion of a greater number of potentially compensatory PR mutations.  The aim of the second and third rules was to identify mutations likely to appear under the pressure of PI-based treatment. Mutations meeting (1), (2) and (3) were considered potentially compensatory.  This selection process resulted in a list of 129 reverse transcriptase (RT) and 147 PR substitutions. Of these, we evaluated 41 substitutions which met a pre-specified prevalence threshold in our dataset (1%) for their effect on CD4 counts and the VL (L10I, L10V, T12N, I13V, I15V, G16E, K20I, K20R, L33V, M36I, M36L, K43R, D60E, I62V,  L63P, H69Q, H69N, H69Y, A71T,  A71V, T74S, V77I,  L90I, Q92K and I93L in the PR and M41L, D67N, A98S, K101Q , K101R, K103N, V106, V118I, E138A, V179D, V179I M184V, V189I, L210W,T215S and K219Q in the RT). This threshold was chosen as mutations that occurred at a lower frequency were considered unlikely to be of clinical significance. 

Supplementary Appendix III – PCA methodology and results

Brief description of PCA methodology

PCA is a variable reduction technique that transforms a number of correlated variables into a smaller number of linearly uncorrelated variables, principal components (PC), that explain as much of the variance in the original dataset as possible. The contribution of each original variable to a given PC is given by a weight (loading), and these can be used to infer clusters of mutations that all load onto the same PC. In this paper we have avoided the terminology commonly associated with PCA and instead referred to the extracted PC’s as clusters, in order to aid the interpretability of our results. 

Once PC’s have been extracted, individuals in the dataset can be assigned a score on each PC which represents how closely their mutation pattern aligns with that captured by the PC. These scores can be and commonly are used as exposures in consequent models. In this analysis we constructed binary variables for use as exposures in the mixed models from the component-based scores using the 3rd quartile as a cut-off point.
We identified how many components to retain through graphical inspection of a scree plot. Scree plots show the amount of variability in the dataset that is explained by each extracted component or factor. The number of components is always the same as the number of variables entered into the PCA, but the newly constructed components explain different amounts of the variance. The scree plots in this instance showed reasonably clear break points at the 3rd (RT) and 3rd (PR) component, and it was therefore decided to retain 2 and 2 components respectively. The retained components were then subjected to a varimax (orthogonal) rotation. Factor loadings below 30 were considered negligible, between 30-40 weak, above 40 strong and above 70 very strong. Mutations with loadings above 40 were interpreted as forming part of a cluster captured by that PC; those with loadings between 30 and 40 were considered weakly associated with the cluster. To simplify the interpretation of our results and because we expected that most clusters would be gene specific, we ran separate PCA’s for RT and PI mutations. We did not differentiate between different amino-acid substitutions in the same position. The PCA were conducted on baseline data, meaning that each individual contributed only one line of data. 

Figure 1.  Scree plot for RT (a) and PI (b) mutations
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[image: image1.png]Figure 2. Contributions of each mutation to the RT (a) and PR (b) clusters’
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