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Abstract

This document presents approaches to using Spectrum (AIM) model to estimate: a) the proportion
of people living with HIV (PLHIV) who have been diagnosed, b) the mean CD4 at diagnosis, and c) the
mean time from infection to diagnosis for these individuals.

1 A Simple Model for HIV infected individuals

In this paragraph, we consider a birth cohort in a population in which HIV infection is spreading over
time. Let us assume that we are following the cohort of people alive between times 0 and t. Let w, v and
s be the respective times of infection, diagnosis and treatment initiation; and let S(t) be the susceptible
population and let Iun(t, w), Idu(t, w), Idt(t, v, w) be the undiagnosed, diagnosed untreated, and diagnosed
and treated infected populations, respectively. Figure 1 illustrates the flow of individuals in our population
in the compartments considered here. That flow can be described by the following system:

∂S(t)

∂t
= − (λ(t) + µ(t))S(t)

Iun(t, t) = λ(t)S(t)
∂Iun

∂t
+

∂Iun

∂w
= − (mun(t, w) + δ(t, w) + µ(t)) Iun(t, w)

Idu(t, t, w) = δ(t, w)Iun(t, w)
∂Idu

∂t
+

∂Idu

∂w
+

∂Idu

∂v
= − (mun(t, w) + η(t, v, w) + µ(t)) Idu(t, v, w)

Idt(t, t, v, w) = η(t, v, w)Idu(t, v, w)
∂Idt

∂t
+

∂Idt

∂w
+

∂Idt

∂v
+

∂Idt

∂s
= − (mdt(t, v, w) + µ(t)) Idt(t, s, v, w)

(1)

where λ is the incidence function; µ is the background mortality; δ is the diagnosis rate; mun is the mortality
among HIV infected and undiagnosed; mdu is the mortality among infected, diagnosed and untreated; η is the
treatment initiation among diagnosed individuals; and mdt is the mortality rate among infected, diagnosed
and treated individuals. This shows that, in order to tract infection, diagnosis and treatment initiation, a
minimum of 10 compartment should be considered by age or risk group. In order to avoid this, we consider
instead a simplified version in which infection, diagnosis and treatment initiation times are not tracked. The
system reduces to a system of ODE:

dS(t)

dt
= − (λ(t) + µ(t))S(t)

dĨun

dt
= λ(t)S(t)−

(
m̃un(t) + δ̃(t) + µ(t)

)
Ĩun(t)

dĨdu

dt
= δ̃(t)Ĩun(t)− (m̃un(t) + η̃(t) + µ(t)) Ĩdu(t)

dĨdt

dt
= η̃(t)Ĩdu(t)− (m̃dt(t) + µ(t)) Idt(t)

(2)

where the symbol ˜ put on top of population type, indicates that a sum was taken over all the possible
infection time, diagnosis time and/or treatment initiation; and the the overall rates in the populations of
interest. The solution to (2) can be otained from the solution of (1) if we have:

δ̃(t) =

∫ t

0
Λ(w)M0(t, w)δ(t, w)dw∫ t

0
Λ(w)M0(t, w)dw

(3)

1



S. Guy Mahiané et al.

m̃un(t) =

∫ t

0
Λ(w)M0(t, w)mun(t, w)dw∫ t

0
Λ(w)M0(t, w)dw

(4)

m̃dt(t) =

∫ t

0
Λ(w)

∫ t

w
M0(v, w)δ(v, w)M1(t, v, w)η(t, v, w)dvdw∫ t

0
Λ(w)

∫ t

w
M0(v, w)δ(v, w)M1(t, v, w)dvdw

(5)

η̃(t) =

∫ t

0
Λ(w)

∫ t

s

∫ s

w
M0(v, w)δ(v, w)M1(s, v, w)η(s, v, w)M2(t, s, w)mdt(t, s, w)dsdvdw∫ t

0
Λ(w)

∫ t

s

∫ s

w
M0(v, w)δ(v, w)M1(s, v, w)η(s, v, w)M2(t, s, w)dsdvdw

(6)

where Λ(w) = e−
∫

w

0
λ(ζ)dζλ(w), M0(v, w) = e−

∫
v

w
(mun+δ)(ζ,w)dζ , M1(s, v, w) = e−

∫
s

v
(mun(ζ,w)+η(t,ζ,w))dζ and

M2(s, v, w) = e−
∫

s

v
(mdt(s,ζ,w))dζ .

We can obtain the time to diagnosis and CD4 at diagnosis using formulae similar to (3) and (4). In
fact, the mean time from infection to diagnosis is given by (7) and, if g(t, w) gives the CD4 trajectory as a
function of infection time, then the mean CD4 for newly diagniosed individuals, g̃, is given by (8).

T̃d(t) =

∫ t

0
Λ(w)M0(t, w)δ(t, w)(t− w)dw
∫ t

0
Λ(w)M0(t, w)δ(t, w)dw

(7)

g̃(t) =

∫ t

0
Λ(w)M0(t, w)δ(t, w)G(t, w)dw
∫ t

0
Λ(w)M0(t, w)δ(t, w)dw

(8)

Now, we propose to approximate the solution to the System (3)-(6) using the following scheme:

St+τ = StE0,t (9)

Iun,t+τ = Iun,tE1,t +
λtτSt

6

(
E1,t + 4E

1

2

0 E
1

2

1,t + E0,t

)
(10)

Idu,t+τ = IduE2,t +
δ̃tτIun,t

6

(
E2,t + 4E

1

2

2 E
1

2

1,t + E1,t

)

+
λtδ̃tτ

2St

36

(
E2,t + 4E

1

2

2 E
1

2

1,t + E1,t + 2
(
E

1

2

2,t + 4E
1

4

2,tE
1

4

1,t + E
1

2

1,t

))
(11)

Idt,t+τ = IdtE3,t +
η̃tτIdu,t

6

(
E3,t + 4E

1

2

3 E
1

2

2,t + E2,t

)

+
δ̃tη̃tτ

2Iun,t

36

(
E3,t + 4E

1

2

3 E
1

2

2,t + E2,t + 2
(
E

1

2

3,t + 4E
1

4

3,tE
1

4

2,t + E
1

2

2,t

))
(12)

where E0,t = eλtτ , E1,t = e−(m̃un,t+δ̃t)τ , E2,t = e−(m̃du,t+η̃t)τ and E3,t = e−m̃dt,tτ , and the subscripts indexed
by time (t or t+ τ) indicate the dependency with respect to time.

Note that the background mortality was dropped from (9)-to-(12) because we are only interested in
proportions; the main simulation is performed using Spectrum’s AIM. In fact, for each bith cohort, we solve
the system (9)-to-(12) with the initial condition S0 = 1, Iun,0 = Idu,0 = Idt,0 = 0 then, for each time, the
proportion of undiagnosed, qt is given by (13).

qt =
Iun,t

Iun,t + Idu,t + Idt,t
, (13)

and the proportion of PLHIV newly diagnosed (between t and t+ τ), pnew,t+τ is given by (14).

pnew,t+τ =
Idu,t+τ + Idt,t+τ − Idu,tE2,t − Idt,tE3,t

Iun,t+τ + Idu,t+τ + Idt,t+τ

, (14)

In this work, we assume that the diagnosis rate is proportional to mortality rate in absence of treatment,
i.e.

δ(v, w) = δ̄(v)mun(v, w), ∀w, v : v ≥ w,

where

δ̄(v) = Γ(v − t0, z1, 1)

and Γ is a Gamma cummulative distribution function with shape z1 and scale 1, z2 is a scale factor, and t0
is the year when the first diagnosis was observed.

Formulae (3)-to-(8) do not appear very practical because they involve integrals of functions. Their
discretized versions are used instead. Furthermore, the closed forms of functions δ(t, w), g(t, w), mun(t, w),
η(t, v, w) and mdt(t, v, w) are not directly available from Spectrum. We discuss their construction in Section
1.1.
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Iun(t, w)

Idu(t, v, w)

Idt(t, s, v, w)

δ(t, w)

η(t, v, w)

λ(w)

mun(t, w)

mun(t, w)

mdt(t, s, v, w)

Figure 1: Flow chart for the HIV infected population. λ(w) is the incidence hazard rate at time w, Iun(t, w)
is the infected population not yet diagnosed, Idu(t, w) is the infected diagnosed but who have not started
treatment yet, Idt(t, w) is the infected population on treatment, δ(t, w) is the rate at which individuals are
diagnosed, mun(t, w) is the mortality rate for undiagnosed, mdt(t, s, v, w) is the mortality for those who
started treatment at time s and η(t, v, w) is the treatment initiation rate.

1.1 CD4 trajectories, mortality and diagnosis rates

We obtain the CD4 trajectory as a function of age at infection using Spectrum progression rates as follows.
Let a0 be the age at infection and c0 the CD4 count at infection.

Define the age category, a1, the CD4 category, c1, the time of change of CD4 category, u, the time of
change of category, v. Now, for each CD4 category c1, let Cc1 be the largest CD4 value for that category
and let νa1,c1 be the CD4 progression rate from CD4 category c1 to the lower CD4 category, c1 + 1, for
individuals in the age category a1. Let A1 denote the maximum age for individuals in the age category a1.

Set a = a0, c = c0 and repeat the following steps.

Algorithm 1

Step 1 Calculate:

• Time to CD4 category change, u = −
1

νa1,c1
log

(
Cc1+1

Cc1

)

• Time to age category change, v = Aa1+1 − a

Step 2 Do:

• If progression to the next CD4 category occurs before age category change, i.e. u < v, then:

c1 = c1 + 1, a = a+ u, t = t+ u

• Else (change of age caterogy happens before CD4 category threshold), then:

a = Aa1+1, , a1 = a1 + 1, t = t+ v

Step 3 Do:

• If minimum CD4 or maximum age is reached, then Stop.

• Else go to Step 1.

The above algorithm can give the CD4 trajectory of infected people as a function of both time (or, equiv-
alently, age) and CD4 at infection, f̃·(t, w, c0), where (· = x for men or y for women). In order to obtain
the trajectory as a function of time only, we integrate that function over the CD4 distribution at infection,
using Spectrum assumption regarding that distribution; i.e.

f̃·(t, w) =

cmax∑

c0=1

f̃·(t, a, w, c0)πa−t+w,c0 ,

where πa−t+w,c0 is the probability that an individual who became infected at age a− t+w had CD4 count in
the category c0 at infection. Figures 2 (a) and (b) displays CD4 trajectories as a function of age at infection
for both women and men, obtained as described in Algorithm 1 for developed countries, using Spectrums
assumptions.

In order to obtain mortality rates as a function of time and age at infection for undiagnosed individuals,
one can follow the the CD4 trajectory and assign the mortality rate that corresponds to the CD4 category.
More precisely, to get mortality for individuals infected at age a0 (or time w), we first obtain their CD4
at time t, f̃·(t, w) then, we use the CD4 category obtain that way to get the mortality as assumed by
Spectrum. Figures 3 (a) and (b) illustrates mortality rates as a function of age at infection for women and
men, respectively. Similarly, we can obtain mortality as a function of age at infection and age at ART
initiation; Figures 4 (a)and (b) illustrate the change in mortality rate as a function of age at ART initiation,
for women in developed countries who became infected at 15 and 30 years, respectively.
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Figure 2: CD4 decline as a function of age at infection for women (a) and men (b).

Finally, because we can track CD4 trajectories as a function of time since infection, one can easilly specify
the treatment initialtion rate η(t, v, w) as a function of WHO guidelines. More specifically, we assume that,
for diagnosed individuals, the time to ART initiation when eligibility criteria are met follow an Exponential
distribution with mean 3 months. Moreover, diagnosed individuals who do not meet treatment eligibility
also intiate treatment at a rate proportional to HIV related mortality; i.e., if µ0 is HIV related mortality at
treatment initiation and µc is mortality rate of noneligible individuals in the CD4 category c, then treatment
itiation rate for these individuals is 3µc

µ0

eǫ

1+eǫ
.

1.2 Incidence Options

Double and single logistic curves. Prior this work, the principle supporting the CSVAR fitting tool was
to choose a family of parametric curves, vary the parameter values and retain the set that provides the best
fit to the data, using the either maximum likelihood estimation method or by minimizing the Chi-squared
distance (see [2]). The family of candidate curves consisted of double logistic and single logistic functions (see
[2]). The double logistic curve was parameterized by 5 parameters while the single logistic was parameterized
by two parameters. To be more specific, the double logistic incidence curve was given by (15)

λ(t) =
eα(t−t0)

1 + eα(t−t0)

(
2a

e−β(t−t0)

1 + e−β(t−t0)
+ b

)
, t0, a, b, α, β > 0 (15)

and the single logistic incidence curve was given by (16)

λ(t) =
e−c+α(t−1970)

1 + e−c+α(t−1970)
, a, b, α, β > 0 (16)

This contains functions flexible enough to capture most HIV epidemic trends. However, for a handful of
countries, the best curve obtained from that family was not satisfactory.

In the Bayesian framework, the double logistic model is fitted with the following prior distribution on its
parameters:

log(α) ∼ N (−2, 2), log(β) ∼ N (−2, 2), log(t0 − 1970) ∼ N (log(10), 1)
log(− log(a)) ∼ N (2.44, 2), log(− log(b)) ∼ N (1.95, 2)

(17)

while the single logistic model is fitted with the prior distributions on its parameters:

log(c) ∼ N (3, 1), log(α) ∼ N (−5, 5) (18)

Second Order Segmented polynomials. We included second order segmented polynomial functions
(see [3]) as an option, to circumvent the limitations of the single and double logistic curves. With this
choice, we can estimate the position of knots.

Although this family of functions is very flexible, the number of parameters needed can be relatively
large. Furthermore, the functions in that family are not naturally constrained to be non negative. One can
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Figure 3: Mortality rates as a function of age at infection for infected an untreated women (a) and men (b).

Figure 4: Mortality rates as a function of age at ART initiation for women in developed countries aged 15
(a) and 30 (b) when they became infected.
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use the augmented Lagragian to enforce constraints on the incidence or, alternatively, in order not increase
the complexity of the problem, we propose to use a transformation of the spline. In fact, we used the

transformtation x 7→ imax
x2

1+x2 , where imax is a prior bound on the incidence rate; i.e., for this model, the
incidence is given by (19):

λ(t) = λmax

i2(t)

1 + i2(t)
(19)

were λmax is the largest possible value allowed for the incidence rate, and i(t) = ak + bk(t− tk)+ ck(t− tk)
2,

for t ∈ (tk−1, tk) t0 is the start year of the epidemic, ak, bk, k = 0, 1, 2, 3 and tk, k = 1, 2 are parameters to
be estimated. In Bayesian analyses this model was fitted with the following prior distributions:

a0 ∼ N (−30, 2), b0 ∼ N (−10, 2), ck ∼ (−1)(k+1)N (0.005, 1)

ζk

(
tk−tk−1

tmax−t0

)
∼ N (0, 1

3 ), k = 1, 2, 3
(20)

where ζ = (ζ1, ζ2, ζ3) is the inverse of the transformation (x1, x2, x3) 7→
(

ex1

1+
∑

3

k=1
exi

, ex2

1+
∑

3

k=1
exi

, ex3

1+
∑

3

k=1
exi

)
.

Transmission model using the rlogistic function. Instead of directly modelling the HIV incidence
rate directly, we also consider modelling the transmission rate r(t), as in the Estimation Projection Package
(EPP) model [1]. In this case, the incidence rate is given by (21).

λ(t) = r(t)p(t) (1− 0.7κ(t)) (21)

where p(t) and κ(t) are the prevalence and ART coverage at time t, respectively, and 0.7 is the average
reduction in transmission per additional person on ART. We use a logistic function to model the logarithm
of r(t), termed rlogistic with four parameters:

log r(t) = r0 − (r∞ − r0)
1

1 + exp (−α(t− tmid))

where exp(r0) is the initial exponential growth rate of the epidemic, exp(r∞) is the equilibrium value for
r(t), α is the rate of change of r(t) in the log-scale, and tmid is the inflection point. For this model, we
additionally specify a fifth parameter, ι, as the incidence rate at time t = t0, providing the initial pulse of
infections. This model is fitted with prior distributions on its parameter:

r0 ∼ N (log(0.5), 0.5) , r∞ ∼ N (log(0.09), 0.3) log(α) ∼ N (log(0.2), 0.5) ,
tmid ∼ N (1993, 5) , ι ∼ N (−13, 5) .

(22)

2 Fitting procedures

2.1 Previous version

In the previous approach, it was assumed that data consist of numbers of new diagnoses (ni(tij), j = 1 . . . ji),
deaths (nd(tdj), j = 1 . . . jd) and PLHIV (nh(thj), j = 1 . . . jh), where tj , (j ∈ {j = 1 . . . ji}∪{j = 1 . . . jd}∪
{j = 1 . . . jh}) are the observation times. For the likelihood estimation approach, it was assumed that the
observed numbers followed Poisson distributions and, under that assumption, maximizing the likelihood was
equivalent to minimizing the loss function given by (23).

nlik(θ) = −
∑

u=i,d,h

ju∑

j=1

(nu(tuj) log(n̂u(θ, tuj))− n̂u(θ, tuj)) , (23)

where we adopted the convention that the sum over an empty set is zero; θ is the vector of parameter values,
and the hat over quantities indicates Spectrum predictions when the incidence curve is defined by θ.

For the minimum Chi-Squared distance method, the loss function was rather given by (24).

ks(θ) =
∑

u=i,d,h

ju∑

j=1

(nu(tuj)− n̂u(θ, tuj))
2

nu(tuj)
, (24)

Note that, in the previous version, it was not possible to get the number of new diagnoses directly from
Spectrum. The number of new diagnoses was used to obtain a crude approximation of the number of new
incident cases and vice versa.

2.2 New version

The models presented in Sections 1 allow avoiding the assumptions needed to derive the number of incident
cases at the cost of adding two more parameters used to model the diagnosis rate as a function of time.
We assume that the observed CD4 at diagnosis follow a Gamma distribution with parameter (α, β). Let
θ = (θ′, α, β, ǫ) be the parameter under the new version (where θ′ is the incidence parameter, and ǫ models
treatment initiation for in dividuals who don’t meet WHO eligibility criteria). Now, we assume that mean
CD4 can only be measured in years when new diagnoses are observed and their number in greater that 1.

Let na(taj), j = 1 . . . ja be the number of people on ART reported by the country. We assume here
that the numbers observed follow Poisson distributions, and that the mean CD4 at diagnosis follow Gamma
distributions. If we keep the notations of the previous paragraphs, the loss function given by (23) becomes:
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nlik(θ) = −
∑

u=i,d,h

ju∑

j=1

(
nu(tuj) log(n̂

(
uθ, tuj))− n̂u(θ, tuj)

)

−

ja∑

j=1

(na(taj) log(n̂a(θ, taj))− n̂a(θ, taj))

−

jd∑

j=1

(αnd(tj)− 1) gj(tj) log(ĝj(tj))− αnd(tj)ĝj(θ, tj),

(25)

We fitted the models by maximizing the posterior likelihood, which is equivalent to minimizing:

L(θ) = −P1(θ
′)− P2(z1, z2, ǫ) + nlik(θ), (26)

where P1 is determined by (17), (18), (20) or (22), and P2 is such that log(z1) ∼ N (2.7, 10), log(z2) ∼
N (1.5, 10), and ǫ ∼ N (0, 1).

Kernel Hamiltonian Monte Carlo [4] was implemented as an option for the calibration.
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