

Supplemental Figure 1

Supplemental Digital Content 2 - Supplemental Figure 1. AMP does not affect cell viability.

A-B, SH-SY5Y cells were cultured for 16 h in the presence or absence of AMP (10 mM), H_2O_2 (2 mM), or vehicle control. Then, cells were stained with SytoxGreen dye and the number of dead (SytoxGreen positive) cells was determined. **A**, Representative images of merged bright field and fluorescence images (20x objective, n=6). **B**, Averaged results of 6 independent experiments (mean + SD, n=6). **p*<0.05, Kruskal-Wallis test.

Supplemental Figure 2

Supplemental Digital Content 2 - Supplemental Figure 2. Dipyridamole tends to increase the hypometabolic effect of AMP.

A, C57BL/6J mice were anesthetized with isoflurane and treated with dpyridamole (1 mg/mouse *i.p.*) or saline. After 5 min, AMP (4 mg/g *i.p.*) was administered and the heart rate was monitored by ECG recording (mean ± SD, n=3 mice per group). **B**, C57BL/6J mice (control and AMP groups: n=6, dipyridamole + AMP group: n=7) were anaesthetized with ketamine/xylazine and treated with AMP (4 mg/g *i.p.*) dipyridamole (1 mg/mouse *i.p.*) followed by AMP (4 mg/g, *i.p.*) after 2 min, or with normal saline (control). After 2 min, the mice were placed into a chamber containing <1% O₂. The mice were monitored and the time point when respiration ceased for more than 6 seconds was recorded; **p<0.01 vs. control, Kaplan-Meier and log rank test.

Supplemental Video Legends

Supplemental Digital Content 1 - Video 1. AMP renders mice indifferent to arousal.

C57BL/6J mice were treated with AMP (0.5 mg/g body weight *i.p.*) and alertness and the response to physical stimulation were assessed.

Supplemental Digital Content 3 - Video 2. AMP stalls mitochondrial activity.

SH-SY5Y cells were labeled with the mitochondrial membrane potential probe JC-1 and changes in red JC-1 fluorescence were recorded at a frame rate of 1 frame per second. Vehicle control, AMP (10 mM) or CCCP (1 μ M) were added 3 s after starting recording. Images were acquired using a 20x objective (NA 0.40).

Supplemental Digital Content 4 - Video 3. AMP and ATP have opposing effects on mitochondrial Ca²⁺ uptake.

Mitochondrial Ca²⁺ levels in SH-SY5Y cells expressing the mitochondrial Ca²⁺ sensor mito-CAR-GECO1 were recorded with a frame rate of 1 frame per second. Cells were exposed to ATP (10 μ M) or AMP (10 mM) 20 s after starting recording. Images were acquired using a 40x objective (NA 0.75).

Supplemental Digital Content 5 - Video 4. AMP and ATP have opposing effects on cytosolic Ca²⁺ levels.

SH-SY5Y cells were loaded with Fluo-4 and cytosolic Ca²⁺ levels were monitored with video fluorescence microscopy with a frame rate of 1 frame per second. ATP (100 μ M) or AMP (20 mM) were added 3 s after starting recording. Images were acquired using a 40x objective (NA 0.75).