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Discussion of Relevant Brain Areas
Results from this study show postsurgical attenuation of mesolimbic reward network activation in response to food cues, which was greater in magnitude in response to high- (vs. low-) ED foods. This mesolimbic dopaminergic pathway drives food intake based on the perceived reward value of food1-4 and includes the amygdala, hippocampus, ventral tegmental area (VTA), ventral striatum (caudate, nucleus accumbens, and lentiform nucleus) and PFC (dlPFC, dmPFC, vlPFC, and orbitofrontal cortex [OFC]).5 In the present study, large postsurgical reductions in activation were seen in three key areas within the mesolimbic reward pathway, the VTA, ventral striatum and PFC. These areas are briefly discussed in relation to food intake.
Ventral Tegmental Area
The VTA is located in the midbrain, dorsal to the ventral striatum and is the origin of the dopaminergic cell bodies that comprise the mesolimbic dopamine system. It Limbic related structures, especially lateral hypothalamic areas, project to the VTA.6 Projections originating from the VTA extend to the nucleus accumbens, ventromedial and ventrolateral striatum, prefrontal cortex, amygdala, septum, and hippocampus.6,7 The VTA is activated in response to food stimuli and shows greater activation in response to high- relative to low- ED foods.8-11 Opioid stimulation of the VTA has been shown to increase food intake.12-14 In addition, VTA activation has been shown in response to high-ED but not low-ED foods in obese individuals,15 and has been found to be heavily involved in behavioral preferences for high- vs. low- ED foods in animals.9 Thus, the VTA may modulate reward-related neural activation selectively in response to high- (vs. low-) ED food cues.9,10,15 

Ventral Striatum (caudate and lentiform nucleus)
The ventral striatum is a subcortical structure located anterior to the VTA and posterior to the PFC. It is highly innervated by dopamine neurons originating from the VTA, as well as glutamatergic neurons of the hippocampus, amygdala, and medial PFC.5 In obese individuals, caudate activation is greater when viewing high (vs. low) calorie food images16 and is associated with anticipated receipt of a palatable food.8,11 In addition, viewing high (vs. low) calorie food cues produces more caudate activation in obese compared with lean individuals.15 The lentiform nucleus comprises the globus pallidus and putamen, both of which have been shown to be highly related to appetitive behavior.17-20 In healthy individuals, increased lentiform nucleus activation is seen in response to images of high vs. low calorie foods16 and activation of this region during the presentation of food stimuli is positively correlated with subjective ratings of appetite.21 
Prefrontal Cortex (medial frontal gyrus, middle frontal gyrus, inferior frontal gyrus, superior frontal gyrus)
The PFC is the most anterior area of the brain, responsible for the integration of external sensory information relayed mainly through the thalamus4 with reward-related information from other cortico-limbic areas.3,4 The PFC is connected to cortical areas involved in motor planning and execution22-25 and is chiefly responsible for initiating behavioral responses based on perceived hedonic value (i.e., whether or not to consume food).2-5,25 The medial frontal gyrus contains supplementary motor areas26 and has been implicated in reward-related motor planning, imagery, and decision making.27-29 The middle frontal gyrus relates sensory data to past experience and, together with the superior frontal gyrus, forms the dlPFC. Activation within the dlPFC has been associated with both perceived reward value30-32 and satiety.33,34 Thus, activation within the dlPFC can be excitatory or inhibitory in driving food intake, which may depend upon areas of co-activation35 and vagal afferent signaling through the hypothalamus.36-38 The inferior frontal gyrus, encompassing portions of the vlPFC and OFC, serves as a convergence zone for the evaluative processing of food-related stimuli. Activation in vlPFC is associated with specific information about the quality and hedonic value of food,39 while the OFC is considered a primary region for the processing of the perceived reward value of food.2 The OFC is activated by visual food cues21 and shows greater activation in obese vs. lean subjects.15,40 Finally, co-activation in the PFC and cingulate cortex (also significantly reduced postsurgically) has been shown to mediate anticipatory preferences.41,42
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Supplemental Table 1. Nutrient Estimates of Food Cues
	
	Energy density

(kcal/g)
	Energy

(kcal)
	Fat

(g)
	Energy from fat (% kcal)

	High-ED
	4.3 ± 1.4
	571 ± 219
	30 ± 19
	44.6 ± 6.8

	Low-ED
	0.5 ± 0.1
	23 ± 11
	0.2 ± 0.1
	1.1 ± 0.2


Supplemental Table 2. Weight and BMI of Female Participants (mean ± SD)

	
	1 mo Pre surgery
	1 mo Post surgery
	Change1

	Weight (kg)
	120.9 ± 18.0
	106.4 ± 15.1
	-14.5 ± 5.0*

	BMI (kg/m2)
	 45.1 ± 5.3
	 39.8 ± 4.2
	 -5.3 ± 1.9*

	% Initial Body Weight
	100
	88.2 ± 3.1
	-11.83 ± 3.1*


1 Change from 1 mo pre-surgery to 1 mo post-surgery

* Significant at p < 0.0005, paired-sample t-test
Supplemental Table 3. Pre > Post Contrast. Conjoint (visual + auditory) brain activation in response to high- and low- ED food stimuli pre > 1mo post, p < .05 uncorrected.
	Coordinates (x, y, z)
	Area(s)
	k1
	Minimal t-value

	High-ED Foods

	12, -74, -10
	lingual gyrus
	7863
	4.31

	-56, -10, 4
	middle temporal gyrus

superior temporal gyrus
	2408
	4.08

	-4, -30, 72
	inferior parietal lobule

precuneus
	1785
	4.02

	Low-ED Foods

	-18, -86, -12
	lingual gyrus

cuneus
	6851
	4.91

	-60, 26, 2
	insula

Middle temporal gyrus

Superior temporal gyrus
	2189
	3.78


1 k = number of voxels within each cluster

Supplemental Figure Legends

Supplemental Figure 1. Glass Brain Figures Generated from High-ED – Non-Food, Pre > Post Contrast. In response to high-ED foods, relative to non-foods, significant postsurgical reductions were seen in the superior temporal gyrus, middle temporal gyrus, middle frontal gyrus, inferior frontal gyrus, and lentiform nucleus.

Supplemental Figure 2. Glass Brain Figures Generated from Low-ED – Non-Food, Pre > Post Contrast. In response to low-ED foods, relative to non-foods, significant postsurgical reductions were seen in the insula, middle temporal gyrus and precentral gyrus.

Supplemental Figure 3. Glass Brain Figures Generated from High-ED – Low-ED Contrast. A greater difference between mesolimbic dopaminergic pathway activation in response to high-ED foods and mesolimbic dopaminergic pathway activation in response to low-ED foods can be seen pre- relative to post- surgery.

