TABLE 1. SOME COMMON MEDICAL CAUSES OF HYPERKALEMIA

Impaired Excretion

- Acute kidney injury/chronic kidney disease
- Reduced renal blood flow (i.e. congestive heart failure; cirrhosis)
- Hypoaldosteronism (i.e. adrenal insufficiency; primary hyporeninemia; Hyporeninemic hypoaldosteronism)
- Primary renal tubular defects (sickle cell disease; obstructive uropathy; hereditary tubular defects)

Hyperkalemia Caused by Cellular Shifts in Potassium

- Insulin deficiency
- Acidosis
- Hypertonicity (i.e. mannitol administration; hyperglycemia)
- Cellular breakdown or leakage
- Hyperkalemic periodic paralysis

Increased Intake

- Potassium supplementation
- Red blood cell transfusion
- Foods high in potassium
- Potassium-containing salt substitutes
- Protein calorie supplements

Pseudohyperkalemia

- Hemolysis
- Blood sample cooling
- Intravenous fluids with potassium
- Erythrocytosis
- Thrombocytosis
- Familial pseudohyperkalemia

Adapted from references 1-5

TABLE 2. MEDICATIONS THAT CAN CAUSE HYPERKALEMIA

TABLE 2. MEDICATIONS THAT CAN CAUSE HYPERKALEMIA							
DRUG CLASSDRUGS	POTENTIAL INCIDENCE or OTHER INFORMATION						
 Potassium Supplementation Oral Potassium (oral potassium chloride; oral potassium acetate etc.) Intervenus fluids containing potassium (KCl; hyper-alimentation etc.) 	 These products cause a direct increase in potassium. Hyperkalemia will more common in the presence renal insufficiency. 	 Incidence is quite high in patients with any degree of renal dysfunction. 					
Blood products (packed red blood cells)	 Stored cells can partially hemolyze and release potassium when infused 						
Beta Adrenergic Blockers (esp. the non- selective agents) Propranolol; Metoprolol; Carvedilol; Many others	· A reduction in beta 2-driven potassium uptake	 Beta blocker-induced hyperkalemia is estimated at 1- 5% 					
<u>Cardiac Glycosides</u> Digoxin	 Decreases Na+/K+-ATPase activity 	 Happens more frequently with toxic digoxin levels but is not always present in the setting of digoxin toxicity 					
Muscle Depolarizing Agents	 Leakage of potassium out of cells through depolarization of cell membranes 	 May be more common with muscle injury/trauma 					
<u>Diuretics</u> Spironolactone; Eplerenone Amiloride, triamterene	 Antagonizes aldosterone Inhibits sodium reabsorption by blocking the epithelial sodium channel (ENaC) in distal tubule/collecting tubule 	 Hyperkalemia is common as doses of drug increase 					
Drugs Affecting the Renin-Angiotensin							
 <u>Aldosterone System</u> Angiotensin Converting Enzyme Inhibitors ✓ Lisinopril; Captopril; Enalapril; Many others 	 Blockade of angiotensin II synthesis resulting in a reduction of aldosterone secretion; may also impair the delivery of sodium to the distal nephron 	 For ACE-inhibitors and ARBs the incidence of hyperkalemia in clinical trials is estimated at 6% Incidence increases dramatically as reach function acts wares 					
 Angiotensin Receptor Blockers Valsartan; Candesartan; Many others 	 Competitively binds to the angiotensin II receptor resulting in a reduction of aldosterone synthesis 	as renal function gets worse					
 ✓ Direct Renin Inhibitor ✓ Aliskiren 	 Inhibits the conversion of angiotensinogen to angiotensin I and this results in a reduction of aldosterone secretion 						
 ✓ Calcineurin i<i>nhibitors</i> ✓ Cyclosporine; Tacrolimus 	 May reduce aldosterone synthesis and Na+/K+-ATPase pump activity 						
Nonsteroidal Anti-inflammatory Drugs							
/ <u>/NSAIDs)</u> ✓ Ibuprofen; Naproxen; Indometha⇒in; Man ^y others	 Reduction of prostaglandin-mediated renin release, renal blood flow, and glomerular filtration rate (GFR) May impair angiotensin-II induced aldosterone release May cause direct renal toxicity 	 Directly causes nephrotoxicity. Hyperkalemia may be more common in cardiac patients on NSAIDs 					
<u>Anticoagulants</u> · Heparin	 Reduces aldosterone synthesis 	 Hyperkalemia is not common but there are many case reports 					
Antibiotics		Penicillin-induced hyperkalemia					
Penicillin Pentamidine	 Direct source of potassium Blocks luminal sodium channels 	not as common as penicillin use has subsided					
Trimethoprim Calcium Channel Blockers	Blocks luminal sodium channels	Vary aparadia raparta					
· Amlodipine; Nifedipine	 Inhibition of adrenal aldosterone biosynthesis Reduction in aldosterone secretion 	 Very sporadic reports 					
Other Drugs Mannitol	Mannitol is an osmotic diuretic. Administration of mannitol may cause hypertonicity which can drive potassium out of the	 Very sporadic reports 					
 Azole antifungal Drugs 	intracellular space May inhibit adrenal steroid synthesis, which can lead to aldosterone deficiency						
 Ethinyl estradiol/drospirenone Fluoride toxicity 	Spironolactone analogue May reduce aldosterone synthesis; most common in patients on						
Glucose infusion or insulin deficiency	dialysis who drink water with high fluoride levels Infusions may drive K ⁺ from intracellular space to extracellular space						
Amino acids (part of total parenteral nutrition administered intravenously)	 Lysine or arginine enters cells in exchange for K⁺ leading to hyperkalemia 						
<u>Herbal Therapy</u> Milkweed; Lily of the Valley; Siberian ginseng; Hawthorn berries	 All of these substances possess cardiac glycoside activity and may cause hyperkalemia via inhibition of Na+/K+-ATPase pump. 	 Hyperkalemia not always evident in cardiac glycoside toxicity 					
Adapted from references: 6-12							

TABLE 3. PHARMACOTHERAPY FOR THE TREATMENT OF HYPERKALEMIA

TABLE 3. PHARMACOTHERAPY FOR THE TREATMENT OF HYPERKALEMIA								
MEDICATION And	MECHANISM	ADULT DOSE	PED DOSE	ONSET	DURA- TION	EFFECT ON	EFFECT ON	OTHER COMMENTS
GENERAL USE <u>Calcium</u> ✓ Calcium gluconate ✓ Calcium chloride Treating/preventing cardiac arrhythmias in patients with ↑K*	Provides cardiac membrane stabilization induced by toxic effects of potassium	10 ml (one ampule of 10% solution) of calcium gluconate or calcium chloride given IV over 5-10 minutes. May repeat dose in 5- 10	CaCl: 20 mg/kg IV CaGluc: 50- 100 mg/kg IV	1-3 min	30-60 min	SERUM K NONE	NONE	 Calcium is indicated for all patients with severe hyperkalemia (K≥7 mEq/L) or in patients with documented hyperkalemia AND ECG changes consistent with ↑ K+ Reverses ECG effects caused ↑K* by antagonizing membrane excitability Calcium <u>WILL NOT</u> affect potassium concentration The chloride salt contains 3x the amount of elemental calcium per 10cc Calcium chloride must be administered through a central line Constant ECG monitoring is necessary
İnsulin + Glucose ACUTE HYPERKALEMIA	Activation of Na+/K+- ATPase causes potassium shift from extravascular space to intravascular space	Dextrose 25 g (50 ml of 50% solution) plus 5-10 units Regular (or rapid acting) Insulin IV.	Reg or rapid acting insulin 0.1 units/kg given with glucose 0.5 g/kg as D25 at 2 ml/kg (in >5 y/o) or D10 at 5 ml/kg (if <5 y/o)	15-30 min	2-4 hrs.	REDUCE	NONE	 Dose can be repeated every 15 minutes if necessary Blood glucose monitoring is necessary Does not reduce total potassium Dextrose may be unnecessary if patient is hyperglycemic (glucose>250 mg/dL)
Beta adrenergic agonists <i>ACUTE</i> <i>HYPERKALEMIA</i>	Activation of Na+/K+- ATPase causes potassium shift from extravascular space to intravascular space	Albuterol 10-20 mg (mixed with 4 ml of normal saline) administered via nebulizer	Albuterol neb sol 0.4 mg in 2 ml saline (if neonate) 2.5 mg in 2 ml saline (if <25 kg) and 5 mg in 2 ml saline (if >25 kg)		1-2 hrs.	REDUCE	NONE	 May cause tachycardia, tremor etc. Use with caution in patients with coronary artery disease or hypertension. Effect on potassium may be inconsistent from patient to patient Relatively short duration of effect
Loop Diuretics (i.e. furosemide) ACUTE OR CHRONIC HYPERKALEMIA	Increases the urinary excretion of potassium	Furosemide 40-80 mg IV bolus	Furosemide: 1 mg/kg IV (max 40 mg/dose with normal renal function to up to 80 mg with decreased kidney function)	5-10 min	4-6 hrs.	REDUCE	REDUCE	 Most useful if hyperkalemia is caused by inadequate potassium excretion Patients must have adequate renal function for diuretics to be beneficial ↑excretion of other electrolytes (magnesium, sodium, calcium etc.) ↑ fluid loss which can cause dehydration and contribute to renal dysfunction
Sodium Bicarbonate ACUTE HYPERKALEMIA WITH ACIDOSIS	Temporarily shifts potassium from the extracellular space to the intracellular space	50-100 mEq intravenously	1mEq/kg IV (max dose 50 mEq) As 1 ml/kg of 8.4% solution or, if <6 months of age, as 2 ml/kg of a 4.2% solution	5-10 min.	1-2 hrs.	REDUCE	NONE	 Only effective if patient is acidotic. May not be effective in patients with poor renal function or dialysis patient. May have variable, inconsistent effect on potassium Use caution in patients with heart failure as it can increase sodium load Use caution in patients who are hypernatremic

TABLE 3. PHARMACOTHERAPY FOR THE TREATMENT OF HYPERKALEMIA (continued)								
MEDICATION And GENERAL USE	MECHANISM	ADULT DOSE	PED DOSE	ONSET	DURA- TION	EFFECT ON SERUM K	EFFECT ON TOTAL K	OTHER COMMENTS
Sodium Polystyrene Sulfonate {SPS (Kayexalate®)} CHRONIC HYPERKALEMIA	Cation exchange resin which exchanges potassium for sodium in the gut. The K+-resin complex is then excreted in the stool.	Oral: 15-30 g Rectal: 30-50 g as a retention enema	1 g/kg every 4 hours (max dose 30g)	1-2 hrs.	4-6 hrs.	REDUCE	REDUCE	 May have variable, inconsistent effect on K+ concentrations effects Can take 1-2 hrs. to work Has been associated with colonic necrosis and fecal impaction May be constipating but void using with sorbitol, if possible SPS dose should be separated from other oral meds by at least 3 hours (before or after) to avoid potential binding of other meds
Patiromer (Veltassa®) CHRONIC HYPERKALEMIA	Cation exchange resin— exchanges K+ for calcium.	Initial dose-8.4 g once daily; to a maximum dose of 25.2 g	NOT APPROVED	7 hrs.	48 hrs. ++	REDUCE	REDUCE	 Does not work acutely to reduce K+ Can cause constipation and hypomagnesemia (monitor Mg+) Exchanges K+ for calcium so may be safer for patients who cannot tolerate Na (with SPS) May cause hypomagnesemia; constipation; nausea; abdominal discomfort Should be separated from other oral meds by at least 3 hours (before or after) to avoid potential binding of other meds
Sodium Zirconium Cyclosilicate—ZS-9 (Lokelma®) CHRONIC HYPERKALEMIA	Entraps monovalent cations (specifically K+ throughout the GI tract	Initial dose: 10 g TID for 48 hrs. Then 10 g daily	NOT APPROVED	About 1 hr.	2.2 hrs.	REDUCE	REDUCE	 May be safer than exchange resins Faster acting and works throughout GI tract Avoid in patients with severe constipation, bowel obstruction or impaction, including abnormal postoperative bowel motility disorders Contains some sodium so monitor for edema
CaCI=calcium Chloride; CaGluc=Calcium Gluconate; adapted from references: 2, 4, 5, 13-23								

References

- 1. Palmer BF. Regulation of potassium homeostasis. Clin J Am Soc Nephrol 2015;10:1050-1060.
- 2. Dunn JD, Benton WW, Orozco-Torrentera E, et al. The burden of hyperkalemia in patients with cardiovascular and renal disease. *Am J Manag Care* 2015;21(15 Suppl):s307–s315.
- 3. Hoskote SS, Joshi SR, Ghosh AK. Disorders of potassium homeostasis: pathophysiology and management. *J Assoc Physicians India* 2008;56:685-693.
- 4. Viera AJ, Wouk N. Potassium disorders: hypokalemia and hyperkalemia. *Am Fam Physician* 2015;92:487-495.
- 5. Hollander-Rodriguez JC, Calvert JF. Hyperkalemia. Am Fam Physician 2006;73:283-290.
- Kokot F, Hyla-Klekot L. Drug-induced abnormalities of potassium metabolism. *Pol Arch Med* Wewn 2008;118:431-434.
- Ben Salem C, Badreddine A, Fathallah N, et al. Drug-induced hyperkalemia. *Drug Saf* 2014;37:677–692.
- Horn JR, Hansten JD. Diuretics, ACEIs, ARBs, and NSAIDs: a nephrotoxic combination. https://www.pharmacytimes.com/publications/issue/2013/april2013/diuretics-aceis-arbs-andnsaids-a-nephrotoxic-combination. Published April 18, 2013. Accessed August 2, 2018.
- 9. Batlouni M. [Nonsteroidal anti-inflammatory drugs: cardiovascular, cerebrovascular and renal effects]. *Arq Bras Cardiol* 2010;94:556-563. [Article in Portuguese]
- Mandić D, Nezić L, Skrbić R. Severe hyperkalemia induced by propranolol. *Med Pregl* 2014;67:181-184.
- 11. Van Deusen SK, Birkhahn RH, Gaeta TJ. Treatment of hyperkalemia in a patient with unrecognized digitalis toxicity. *J Toxicol Clin Toxicol* 2003;41:373-376.
- 12. Martyn JA, Richtsfeld M. Succinylcholine-induced hyperkalemia in acquired pathologic states: etiologic factors and molecular mechanisms. *Anesthesiology* 2006;104:158–169.

- 13. Ingelfinger JR. A new era for the treatment of hyperkalemia? N Engl J Med 2015;372:275-277.
- Ng KE, Lee C-S. Updated treatment options in the management of hyperkalemia. US Pharm 2017;42:HS15-HS18.
- 15. Weisberg LS. Management of severe hyperkalemia. Crit Care Med 2008;36:3246-3251.
- De Rosales AV, Siripala DS, Bodana S, et. al. Pseudohyperkalemia: look before you treat. *Saudi* J Kidney Dis Transpl 2017;28:410-414.
- Mahoney BA, Smith WA, Lo DS, et al. Emergency interventions for hyperkalemia. *Cochrane Database Syst Rev* 2005;2:CD003235.
- McCullough PA, Costanzo MR, Silver M et al. Novel agents for the prevention and management of hyperkalemia. *Rev Cardiovasc Med* 2015;16:140-155.
- 19. Rafique Z, Weir MR, Onuigbo M, et al. Expert panel recommendations for the identification and management of hyperkalemia and role of patiromer in patients with chronic kidney disease and heart failure. *J Manag Care Spec Pharm* 2017; 23(Suppl 4-a):S10-S19.
- 20. Fried L, Kovesdy CP, Palmer BF. New options for the management of chronic hyperkalemia. *Kidney Int Suppl* 2017;7:164-170.
- 21. Weir MR, Bakris GL, Bushinsky DA, et al. Patiromer in patients with kidney disease and hyperkalemia receiving RAAS inhibitors. *N Engl J Med* 2015;372:211-221.
- 22. Kosiborod M, Rasmussen HS, Lavin P, et al. Effect of sodium zirconium cyclosilicate on potassium lowering for 28 days among outpatients with hyperkalemia: the HARMONIZE randomized clinical trial. *JAMA* 2014;312:2223-2233.
- Packham DK, Rasmussen HS, Lavin PT, et al. Sodium zirconium cyclosilicate in hyperkalemia. N Engl J Med 2015;372:222-231.