Comparing glycaemic benefits of active versus passive lifestyle intervention in kidney allograft recipients (CAVIAR): a randomised controlled trial

Background:

New-onset diabetes is common after kidney transplantation but the benefit of lifestyle intervention to improve glucose metabolism is unproven.

Methods:

- RCT of 130 non-diabetic stable kidney transplant recipients.

- 3-24 months post-transplant randomised to active intervention (**renal dietitian-led** lifestyle advice using **behaviour change techniques**) vs passive intervention (leaflet advice alone)

Behavior change techniques (BTs)				
MOTIVATIONAL		SOCIAL NETWORK SUPPORT		
	GOAL SETTING			
NODE-LINK MAPPING		PHONE-BASED FOLLOW-UP		

Results: N= 103 completed the study (20.8% drop out) over the six-month trial intervention.				
OUTCOME		MEAN DIFFERENCE (active versus passive)	P VALUE	
P R I M A R Y	Insulin secretion	-446 [-3184 to 2292]	0.748	
	Insulin secretion	-0·45 [-1·34 to 0·44]	0.319	
	Disposition index	-940 [-5655 to 3775]	0.693	
S E C N D A R Y	Weight (kg)	-2·47 [-4·01 to -0·92]	0.002	
	Fat mass (kg)	-1.537 [-2.947 to - 0.127]	0.033	
	Incidence of post- transplant diabetes (PTDM)	7.6% versus 15.6%	0.123	

Discussion: Renal dietitian-led lifestyle intervention utilising defined BCTs failed to demonstrate improvement in parameters of glucose metabolism but conflictingly suggested some improvement in clinical outcomes such as weight and risk for PTDM.

Conclusion: This study is the first lifestyle intervention trial designed to improve glycaemic metabolism after kidney transplantation, and introduces the concept of incorporating evidence-based BCTs into post-transplant care, but further research investigation is warranted to determine beneficial effects on clinical outcomes.

Kuningas et al. Transplantation July 2020

@TransplantJrnl @AdnanSharif1979