Table e-1: Baseline characteristics

Total no. of participants	3411
Sex [% female]	50.2%
Age of onset [yrs]	48.7 (11.3)
Disease duration [yrs]	2.8 (3.6)
UHDRS TFC score	8.0 (3.3)
UHDRS TMS score	37.6 (18.8)
BMI	25.2 (4.9)
Mutant CAG repeat size	43.9 (3.1)

Data are represented as mean \pm standard deviation.

Abbreviations: BMI = body mass index, TFC = Total Functional Capacity, TMS = Total Motor Score, UHDRS = Unified Huntington Disease Rating Scale.

	Description	Model
Step 1:	Estimation of the effect of CAG repeat size on age of onset (AO_i) for subject <i>i</i> using the following linear regression equation:	$ln(AO_i) = \beta_0 + \beta_1 \cdot CAG_i + \varepsilon_i$
Step 2:	Residual age of onset (RAO_i) , not explained by CAG repeat size, was defined as the difference between the actual age of onset (AO_i) and predicted age of onset (\widehat{AO}_i) using the formula described in step 1, after back transformation into the natural scale.	$RAO_i = AO_i - \widehat{AO}_i = AO_i \cdot (1 - e^{-\varepsilon_i})$
Step 3:	For each clinical score, including total functional capacity (TFC), total motor score (TMS) and a cognitive summary score (PC1), we first estimated the average effect of age (as a measure of disease duration) on the rate of progression using the actual Enroll-HD dataset. In this model, $Y_i(t)$ represents the clinical score at time t for subject <i>i</i> , t denotes age in years, β_0 represents the average intercept, β_1 denotes the mean rate of disease progression averaged over the entire cohort, $b_{0,i}$ indicates the random intercept for subject <i>i</i> , while $b_{1,i}$ denotes the random slope for subject <i>i</i> (which can be interpreted as the difference between the rate of disease progression for subject <i>i</i> and the average rate of disease progression) while ξ_i represents a random residual error term. We used REML estimation with an unstructured covariance matrix.	$Y_{i}(t) = \beta_{0} + \beta_{1} \cdot t + b_{0,i} + b_{1,i} \cdot t + \xi_{i}$
Step 4:	Simulation of a scenario in which the rate of disease progression in each mutation carrier is determined by his or her CAG repeat size (CAG_i) , residual age of onset (RAO_i) , some other (unknown) factors (U_i) and a random error term (ξ_i) . In this model, \tilde{C}_i , \tilde{R}_i and \tilde{U}_i denote standardized vectors (i.e. with a mean of zero and a standard deviation of one) of CAG_i , RAO_i and U_i , respectively. The fraction of the variation in disease progression determined by the combination of CAG_i and RAO_i is modelled by the f_1 parameter, while the fraction of f_1 which is determined by CAG_i alone is denoted by the f_2 parameter. For the simulation experiments we based estimates of β_0 and β_1 as well as estimates of the variation in the random slopes (i.e. $Var(b_0)$) and errors (i.e. $Var(\xi)$) on the estimates obtained in step 3 from the actual patient data (note that, by definition, both b_0 and ξ have a mean of zero). For each clinical score (including TFC, TMS and PC1) we simulated four different scenarios in which mutant <i>HTT</i> CAG repeat size and residual age of onset were precisely modelled to explain 0, 25%, 50%, 75% or 100%, respectively, of the variation in the rate of disease progression (i.e. $f_1 = \{0, 0.25, 0.5, 0.75, 1\}$). For simplicity, we assumed that in each scenario CAG repeat size and residual age of onset both contributed equally to the variation in the rate of disease progression, i.e. $f_2 =$ $1 - f_2 = 0.5$.	$Y_i(t) = \beta_0 + \beta_1 \cdot \left(\sqrt{f_1}\left(\sqrt{f_2}\tilde{C}_i + \sqrt{1 - f_2}\tilde{R}_i\right) + \sqrt{1 - f_1}\tilde{U}_i + 1\right) \cdot t + b_{0,i} + \xi_i$
Step 5:	To validate that the variation in disease progression in the simulated scenarios was indeed modelled correctly according to the prespecified parameters, we analyzed the simulated datasets with the mixed-effects models described under step 3 and determined the variation in the rate of disease progression accounted for by CAG repeat size (R_{CAG}^2) and residual age of onset (R_{RAO}^2) by calculating the proportion of decrease in variance of the random slope term by sequentially adding \tilde{C}_i and its interaction with t , followed by \tilde{R}_i and its interaction with t (specified models) as compared to a model with only age as a predictor (null model).	$R^{2} = 1 - \frac{Var(b_{1}) \text{ in specified model}}{Var(b_{1}) \text{ in null model}}$

Table e-2: Simulation and analysis strategy

Table e-3: Simulation results

	f_1^{*}	$R_{CAG}^2^{\dagger}$	$R_{RAO}^2^{\dagger}$	$R^2_{CAG+RAO}^{\dagger}$	Difference [‡]
Total functional capacity	0	0.00	0.00	0.00	0.00
	0.25	0.16	0.13	0.30	0.05
	0.50	0.29	0.24	0.55	0.05
	0.75	0.40	0.35	0.78	0.03
	1	0.52	0.46	1.00	0.04
Total motor score	0	0.00	0.00	0.00	0.00
	0.25	0.14	0.14	0.28	0.03
	0.50	0.26	0.25	0.53	0.03
	0.75	0.37	0.37	0.77	0.02
	1	0.49	0.48	1.00	0.02
Cognitive summary score	0	0.00	0.00	0.00	0.00
	0.25	0.16	0.13	0.29	0.04
	0.50	0.28	0.24	0.53	0.03
	0.75	0.40	0.35	0.77	0.02
	1	0.52	0.48	1.00	0.02
Body mass index	0	0.00	0.00	0.00	0.00
	0.25	0.13	0.14	0.25	0.02
	0.50	0.26	0.25	0.48	0.02
	0.75	0.38	0.36	0.69	0.06
	1	0.50	0.45	0.89	0.11

Legend:

*) The fraction of the variation in disease progression determined by the combination of CAG_i and RAO_i is modelled by the f_1 parameter, ranging from 0 to 1. See **Table E-2** for additional details.

†) Note that due to a weak correlation between CAG repeat size and residual age of onset (Pearson's r = -0.03, p < 0.001) the combined coefficient of determination ($R_{CAG+RAO}^2$) is generally slightly different than the sum of the unique variable specific coefficients of determination (R_{CAG}^2 and R_{RAO}^2) as it also includes the effect of the covariance between CAG repeat size and RAO.

 \ddagger) This column contains the maximal difference between the prespecified coefficients of determination $(f_1 \text{ and } f_2)$ and the retrieved coefficients of determination. Note that for simplicity f_2 , the proportion of variation modelled to be due to CAG repeat size alone, was set to 0.5.

Table e-4: Sensitivity analysis: The association between HTT CAG repeat size, residual age of onset and

	Age ¹	CAG ²	$CAG \times age^3$	RAO ⁴	$RAO \times age^5$	R_{CAG}^2 6	$R_{RA0}^2 6$	$R_{CAG+RAO}^2$ ⁶
Total	-5.56×10^{-1}	-1.77	-2.54×10^{-2}	$3.63 imes 10^{-1}$	-3.95×10^{-3}	40.4	7.9 (6.2	62.6
functional	(-5.70 \times 10 $^{\text{-1}}$ to -	(-1.82 to -	(-2.78 $\times10^{\text{-2}}$ to -	$(3.46 \times 10^{-2} \text{ to}$	$(\text{-}5.03\times10^{\text{-}3}\text{to}$ -	(36.9 to	to 9.4)	(58.8 to 66.2)
Tuncuonai	$5.42 \times 10^{-1})^{***}$	1.72)***	$2.30 \times 10^{-2})^{***}$	$3.81 \times 10^{-2})^{***}$	2.87× 10 ⁻³)***	44.1)		
capacity								
Total	3.57	12.16 (11.85	$1.89 imes10^{-1}$	-2.04	2.10×10^{-2}	46.7	8.0 (6.8	65.9 (63.0 to
motor	(3.49 to 3.65)***	to 12.47)***	$(1.75 \times 10^{-1} \text{ to}$	(-2.14 to -	$(1.47 \times 10^{-2} \text{ to})$	(43.7 to	to 9.3)	69.3)
motor			$2.03 imes 10^{-1})^{***}$	1.94)***	$2.72 \times 10^{-2})^{***}$	50.1)		
score								
Cognitive	-2.49×10^{-1}	-8.74×10^{-1}	-1.52×10^{-2}	$1.07 imes 10^{-1}$	-9.35×10^{-4}	42.0	2.4 (1.4	49.7 (45.8 to
	(-2.57×10 ⁻¹ to -	(-9.07 10 ⁻¹ to	(-1.68 \times 10 $^{-2}$ to -	$(9.57\times10^{\text{-2}}$ to	(-1.62 \times 10 $^{\text{-3}}$ to -	(38.5 to	to 3.6)	53.9)
summary	$2.41 \times 10^{-1})^{***}$	$-8.40 imes 10^{-1}$	$1.36 \times 10^{-2})^{***}$	$1.17 \times 10^{-1})^{***}$	$2.43 \times 10^{-4})^{***}$	46.1)		
score		¹)***						
BMI	-1.04 × 10 ⁻¹ (-	-6.02×10^{-1}	-1.24×10^{-2} (-	1.74 × 10 ⁻² (-	$-4.05 imes 10^{-3}$ (-	3.4 (1.6	0.0 (-0.5	4.1 (2.2 to 6.0)
	$1.24\times10^{1}\text{to}$ -	$(-6.82 \times 10^{-1}$	$1.63\times10^{\text{-2}}$ to -	$9.75\times10^{\text{-2}}$ to	$4.72\times10^{\text{-3}}$ to -	to 5.2)	to 0.4)	
	$8.32 \times 10^{-2})^{***}$	to -5.22 \times	$7.52 \times 10^{-3})^{***}$	4.45×10^{-2})	$1.37 \times 10^{-3})^{***}$			
		10-1)***						

clinical progression in HD in the total cohort without excluding outliers and irrespective of BMI.

Legend: Values represent parametric means and 95% confidence intervals of the mean, except for \mathbb{R}^2 (last three column). As the underlying distribution of the \mathbb{R}^2 statistic was unknown, for this statistic we calculated bootstrapped means and 95% bias-corrected and accelerated confidence intervals based on 1000 random resamplings with replacement of the original dataset, while taking into account the clustering of the measurements per subject. **p < 0.01, ***p < 0.01.

¹) This column contains the regression coefficients associated with age which can be interpreted as the rate of disease progression per year in units of the outcome measure.

²) This column contains the regression coefficients associated with expanded *HTT* CAG repeat size which can be interpreted as the average increase or decrease in the outcome measure during the follow-up period per one repeat increase.

³) This column contains the regression coefficients of the interaction term between expanded *HTT* CAG repeat size and age: A significant interaction means that CAG repeat size affects the rate of disease progression.

⁴) This column contains the regression coefficients associated with residual age of onset (RAO) which can be interpreted as the average increase or decrease in the outcome measure during the follow-up period per one year onset later than expected.

⁵) This column contains the regression coefficients of the interaction term between residual age of onset (RAO) and age: A significant interaction means that RAO affects the rate of disease progression.

⁶) These columns represent the coefficients of determination (in percentages) associated with expanded *HTT* CAG repeat size (R_{CAG}^2), residual age of onset (R_{RAO}^2) or both ($R_{CAG+RAO}^2$) and can be interpreted as the fraction of variation in disease progression which can be attributed to *HTT* CAG repeat size, residual age of onset or both acting together, respectively. Note that $R_{CAG+RAO}^2$ is higher than the sum of R_{CAG}^2 and R_{RAO}^2 as these latter two represent estimates of the unique contribution of either *HTT* CAG repeat size or residual age of onset to disease progression, respectively, while the former also includes the proportion of variance explained by their covariance.