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Appendix e-1 

Supplementary information 

 

Cohort ancestry 

Our cohorts consisted of individuals of European and Han Chinese ethnicity; subjects were assigned 
to the two broad ancestry groups according to results of genotype-based principal component analysis 
(PCA) using the programme GCTA.1 The principal components plot of PC1 versus PC2 is shown in 
Supplementary Figure e-2 with study subjects overlaid on HapMap CEU, CHB and YRI ancestral 
populations.  

 

Genotyping quality control 

BeadStudio (Illumina; version 2.0) was used to call genotypes, normalize signal intensity data and 
establish the log R ratio and B allele frequency at every SNP. Quality control of genotypes was 
performed separately for each cohort using PLINK 1.9,2 as follows: all markers with very high (> 0.9) 
rate of missing genotypes were removed. Genotypes for 2,766 ethnicity-sensitive SNPs common to all 
SNP arrays were extracted and STRUCTURE 2.2 was used to derive European and Asian ancestry 
probabilities, with Hapmap Yoruban, Nigeria (YRI) and Han Chinese in Beijing, China (CHB); and 
Utah residents with ancestry from northern and western Europe (CEU) samples as respective 
reference populations.3 Subjects with less than 90% European ancestry in all cohorts were removed, 
except for the Hong Kong cohort where we excluded samples with less than 90% Asian ancestry. 
Hardy-Weinberg equilibrium (HWE) was calculated per ethnic group and in the case of the EpiPGX 
cohort, HWE was checked separately per recruitment site. A HWE cut-off threshold of p < 1 x 10-6 
per marker was applied. All samples with < 0.98 genotype rate, all markers with < 0.95 genotype rate 
and all markers below < 0.01 minor allele frequency were removed. Next, a subset of markers 
independent of each other with respect to linkage disequilibrium (LD) was created using a window 
size of 100 markers shifting by 25 markers at a time and removing one half of every SNP pair with 
genotypic r2 > 0.1. Using this subset of markers, heterozygosity (HET) and identity by state (IBS) was 
calculated in order to remove all samples with outlying HET values (> 5 standard deviations from the 
median of the whole sample) and one half of all sample pairs > 0.9 IBS.  Subjects were removed if 
sex determined from genotype did not match reported gender. Array-specific maps retrieved at the 
website of Will Rayner at the Wellcome Trust (http://www.well.ox.ac.uk/~wrayner/strand/) were used 
to update all marker positions and chromosome numbers to the Genome Reference Consortium 
Human Build 37 (GRCh37) and all A/T and C/G markers were removed to avoid strand issues. 
Genotypes were split up according to chromosome arms (and in the case of chromosome X, it was 
split additionally into pseudo-autosomal regions (PAR) and non-PAR) and created phased haplotypes 
using SHAPEIT v2  with recommended effective size setting (11,418), and using 1000 Genomes 
phase 1 integrated (v3) map files as the reference map.4  Following haplotype phasing, genotypes 
were imputed into our dataset using IMPUTE v2.3.0  with recommended effective population size 
settings (20,000) and 1000 Genomes phase 1 integrated (v3) genotypes as reference.5 The haplotype 
phasing and imputation was also performed in separate batches for each cohort. Additionally, HLA 
alleles were imputed on to genotype data using SNP2HLA from the HapMap CEU reference panel for 
Europeans and an in-house Han Chinese reference panel for the Hong Kong population.6,7 Post-
imputation quality control filters were applied to remove imputed variants with imputation score < 
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0.9, call rate < 0.95 in either cases or controls and a minimum minor allele frequency of 2% across all 
samples to reduce spurious associations.  

 

Study Power 

We estimated that our meta-analyses had 80% power to detect a marker with allele frequency >2% 
and an alpha level of 1.25x10-8 with relative risks (approximated to odds ratio) ≥3, ≥4.5, ≥5 or ≥7 
for all MPE, carbamazepine-MPE, lamotrigine-MPE  and phenytoin-MPE respectively.  For our 
European-specific analyses, we estimated that we had 80% power to detect relative risks ≥3.5, ≥6, 
≥5.5 or ≥9.5 for all MPE, carbamazepine-MPE, lamotrigine-MPE and phenytoin-MPE respectively. 
For our Han Chinese population-specific analyses, we estimated that we had 80% power to detect 
relative risks ≥5, ≥7, ≥32 or ≥15 for all MPE, carbamazepine-MPE, lamotrigine-MPE and phenytoin-
MPE respectively (see Supplementary Figure e-2). 
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