SUPPLEMENTAL MATERIAL

Etiology and outcome of ischemic stroke in patients with renal impairment including chronic kidney disease: Japan Stroke Data Bank

Authors: Kaori Miwa, MD¹; Masatoshi Koga, MD¹; Michikazu Nakai, PhD²; Sohei Yoshimura, MD¹; Yusuke Sasahara, PhD²; Junpei Koge, MD¹; Kazutaka Sonoda, MD³; Akiko Ishigami, MD¹; Yoshitaka Iwanaga, MD²; Yoshihiro Miyamoto, MD²; Shotai Kobayashi, MD⁴; Kazuo Minematsu, MD⁵; Kazunori Toyoda, MD¹, Japan Stroke Data Bank Investigators

Affiliation Information for All Authors: 1. Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan; 2. Center for Cerebral and Cardiovascular Disease Information, National Cerebral and Cardiovascular Center, Suita, Japan; 3. Department of Neurology, Saiseikai Fukuoka Hospital, Fukuoka, Japan; 4. Shimane University School of Medicine, Izumo, Japan; 5. Medical Corporation ISEIKAI, Osaka, Japan

Corresponding author:

Kaori Miwa, MD, PhD

Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, JAPAN

TEL: +81-6-6170-1070; Fax: +81-6-6170-2012;

E-mail: miwa@osaka-njm.net; miwak@ncvc.go.jp

sTable e-1. Subgroup analysis of renal impairment on the unfavorable outcome in cardioembolic stroke

	eGFR categories		Proteinuria		
	Odds ratio (95%	Pinteraction	Odds ratio (95%	Pinteraction	
	confidence interval)		confidence interval)		
Age, years					
>75	1.37 (0.98 – 1.93)	0.635	3.20 (1.82 – 5.61)	0.710	
≤75	1.17 (0.69 – 1.97)	1	3.74 (1.47 – 9.51)		
Sex	<u> </u>				
Male	1.20 (0.85 – 1.68)	0.207	3.18 (1.79 – 5.65)	0.815	
Female	1.67 (1.03 – 2.72)		3.38 (1.38 – 8.21)		
Hypertension	- 1	1	1		
Yes	1.19 (0.86 – 1.49)	0.425	3.01 (1.74 – 5.23)	0.355	
No	1.41 (0.89 – 2.23)		4.19 (1.55 – 11.3)		
Diabetes	- 1	1	1		
Yes	1.15 (0.66 – 1.99)	0.206	1.71 (0.68 – 4.30)	0.120	
No	1.41 (1.01 – 1.95)		4.05 (2.25 – 7.29)		
History of stroke			1		
Yes	1.33 (0.78 – 2.26)	0.926	3.05 (1.11 – 8.39)	0.355	
No	1.29 (0.95 – 1.76)		3.68 (2.10 – 6.47)		
Previous antiplatele	t use		1		
Yes	1.77 (1.07 – 2.93)	0.164	3.39 (1.26 – 9.09)	0.971	
No	1.12 (0.80 – 1.57)		3.45 (1.96 – 6.07)		
Previous anticoagul	ant use				
Yes	1.18 (0.76 – 1.83)	0.813	2.43 (1.04 – 5.61)	0.540	
No	1.41 (0.98 – 2.01)		4.13 (2.27 – 7.50)		
Previous statin use					
Yes	0.79 (0.46 – 1.36)	0.015	2.76 (1.23 – 6.21)	0.598	
No	1.59 (1.14 – 2.18)	1	3.49 (1.93 – 6.31)		
Premorbid mRS	1	I	1	I	
>1	1.26 (0.73 – 2.17)	0.698	4.78 (0.98 – 23.4)	0.540	
≤1	1.36 (0.99 – 1.86)	1	3.04 (1.83 – 5.03)		
NIHSS					

>4	1.26 (0.65 – 1.19)	0.748	4.25 (1.66 – 10.8)	0.960
≤4	1.39 (0.89 – 2.15)		3.01 (1.82 – 4.98)	

Abbreviations: eGFR, estimated glomerular filtration rate; NIHSS, National Institute of Health Stroke Scale; mRS, modified Rankin scale

The model for unfavorable outcomes included age, sex, hypertension, diabetes, history of stroke, previous statin use, previous antiplatelet, alteplase use or/and endovascular treatment, premorbid mRS, and initial NIHSS.

sTable e-2. Subgroup analysis of renal impairment on the unfavorable outcome in small vessel occlusion

	eGFR categories		Proteinuria		
	Odds ratio (95%	Pinteraction	Odds ratio (95%	Pinteraction	
	confidence interval)		confidence interval)		
Age, years					
>75	1.33 (0.81 – 2.19)	0.247	1.74 (0.58 – 5.17)	0.994	
≤75	1.22 (0.65 – 2.28)		1.37 (0.47 – 4.00)		
Sex					
Male	1.19 (0.76 – 1.86)	0.521	1.18 (0.49 – 2.82)	0.421	
Female	1.64 (0.74 – 3.61)		4.94 (0.61 – 26.8)		
Hypertension					
Yes	1.26 (0.79 – 1.16)	0.731	1.38 (0.57 – 3.36)	0.937	
No	1.30 (0.60 – 2.80)		1.88 (0.37 – 9.63)		
Diabetes					
Yes	1.86 (0.99 – 3.49)	0.021	2.24 (0.54 – 9.31)	0.964	
No	0.95 (0.57 – 1.57)	1	1.69 (0.58 – 4.95)		
History of stroke					
Yes	1.26 (0.64 – 2.46)	0.800	4.34 (0.79 – 23.8)	0.112	
No	1.31 (0.81 – 2.11)		1.07 (0.42 – 2.70)		
Previous antiplatelet	use		•		
Yes	1.69 (0.91 – 3.17)	0.697	5.86 (1.27 – 27.1)	0.045	
No	1.05 (0.63 – 1.74)		0.93 (0.34 – 2.55)		
Previous statin			•		
Yes	1.25 (0.56 – 2.78)	0.874	2.82 (0.53 – 15.1)	0.310	
No	1.32 (0.85 – 2.05)		1.26 (0.52 – 3.07)]	
Premorbid mRS			•		
>1	1.79 (0.98 – 3.30)	0.632	15.1 (1.79 – 128.4)	0.887	
≤1	1.41 (0.93 – 2.15)		1.32 (0.62 – 2.79)		
NIHSS				•	
>4	1.35 (0.73 – 1.15)	0.362	1.39 (0.53 – 3.67)	0.233	
≤4	1.58 (1.03 – 2.42)		1.97 (0.77 – 4.97)		

Abbreviations: eGFR, estimated glomerular filtration rate; NIHSS, National Institute of Health

Stroke Scale; mRS, modified Rankin scale

The model for unfavorable outcomes included age, sex, hypertension, diabetes, history of stroke, previous statin use, previous antiplatelet, alteplase use or/and endovascular treatment, premorbid mRS, and initial NIHSS.

sTable e-3. Associations with ischemic stroke subtypes, unfavorable outcome and mortality of patients receiving hemodialysis

	Ischemic stroke subtype	p Unfavorable outcome	p	In-hospital death	p	
	Odds ratio (95%		Odds ratio (95%		Odds ratio (95%	
	confidence interval		confidence interval		confidence interval	
Cardioembolic stroke						
Crude model	1.46 (1.06 – 2.02)	0.019	2.07 (1.17 – 3.65)	0.012	1.60 (0.67 – 3.83)	0.283
Adjusted model	1.67 (1.14 – 2.45)	0.007	2.13 (1.06 – 4.28)	0.034	1.16 (0.43 – 3.15)	0.774
Large artery stroke						
Crude model	0.72 (0.51 – 1.02)	0.068	2.09 (1.12 – 3.91)	0.021	1.71 (0.23 – 12.9)	0.605
Adjusted model	0.64 (0.44 – 0.93)	0.019	1.96 (0.85 – 4.51)	0.115	2.16 (0.26 – 18.1)	0.476
Small vessel occlusion						
Crude model	0.94 (0.67 – 1.32)	0.720	2.47 (1.36 – 4.50)	0.003	NE	-
Adjusted model	0.94 (0.66 – 1.32)	0.704	1.87 (0.81 – 4.31)	0.141	NE	-
Other determined etiology stroke						
Crude model	0.86 (0.56 – 1.32)	0.498	2.41 (1.10 – 5.31)	0.028	NE	-
Adjusted model	0.93 (0.60 – 1.45)	0.744	1.04 (0.36 – 3.01)	0.939	NE	-
Undetermined etiology stroke						
Crude model	1.63 (0.69 – 3.86)	0.261	0.73 (0.21 – 2.58)	0.632	NE	-
Adjusted model	1.50 (0.62 – 3.66)	0.369	0.98 (0.16 – 5.88)	0.986	NE	_

An eGFR of 60 mL/min/1.73 m² was used as a reference.

The model for ischemic stroke subtypes was adjusted for age, sex, hypertension, diabetes, previous statin use, and atrial fibrillation. The model for

unfavorable functional outcomes was adjusted for age, sex, hypertension, diabetes, history of stroke, previous statin use, previous antiplatelet, alteplase use or/and endovascular treatment, premorbid modified Rankin scale (mRS), and initial National Institutes of Health Stroke Scale (NIHSS).

NE = not evaluable

Figure legends

sFigure e-1. Patient flow chart

sFigure e-2. Associations between all eGFR levels and ischemic stroke subtypes (large artery stroke, other determined etiology stroke, and undetermined etiology stroke)

Odds ratios (OR) for the proportion of (A) large artery stroke, (B) other determined etiology stroke, and (C) undetermined etiology stroke by eGFR (per ml/min/1.73 m²) using restricted cubic splines. Risk estimates were adjusted for age, sex, hypertension, diabetes, previous statin use, and atrial fibrillation. Solid lines represent the OR and dashed lines represent 95% CI. Knots were placed at 30, 45, and 60 mL/min/1.73 m² of eGFR. An eGFR of 60 mL/min/1.73 m² was used as a reference.

Abbreviations: eGFR, estimated glomerular filtration rate; SD, standard deviation.

sFigure e-3. Associations of joint eGFR and proteinuria with ischemic stroke subtypes

Odds ratio of renal impairment (eGFR [≥60/<60 mL/min/1.73 m²] with/without proteinuria) for the proportion of ischemic stroke subtypes. The category of eGFR ≥60 mL/min/1.73 m² without proteinuria was set as a reference. Risk estimates were adjusted for age, sex, hypertension, diabetes, previous statin use, and atrial fibrillation

Abbreviations: eGFR, estimated glomerular filtration rate; SD, standard deviation.

sFigure e-4. Associations between renal impairment and unfavorable functional outcome in ischemic stroke subtypes in patients not receiving hemodialysis

Odds ratio of renal impairment (eGFR 45-59 mL/min/1.73 m², eGFR <45 mL/min/1.73 m², decreases in eGFR, or proteinuria) vs. eGFR ≥60 mL/min/1.73 m² or non-proteinuria for unfavorable functional outcomes in ischemic stroke subtypes

Risk estimates were adjusted for age, sex, hypertension, diabetes, history of stroke, previous statin use, previous antiplatelet, alteplase use or/and endovascular treatment, premorbid mRS and initial NIHSS.

Abbreviations: eGFR, estimated glomerular filtration rate; SD, standard deviation; mRS, modified Rankin scale; NIHSS, National Institutes of Health Stroke Scale

sFigure e-5. Associations between eGFR levels and unfavorable functional outcomes in ischemic stroke subtypes (large artery stroke, other determined etiology stroke, and undetermined etiology stroke)

Odds ratios (OR) for unfavorable functional outcomes after (A) large artery stroke, (B) other determined etiology stroke, and (C) undetermined etiology stroke by eGFR (per ml/min/1.73 m²) using restricted cubic splines. Risk estimates were adjusted for age, sex, hypertension, diabetes, history of stroke, previous statin use, previous antiplatelet, alteplase use or/and

endovascular treatment, premorbid mRS score, and initial NIHSS score. Solid lines represent the OR and dashed lines represent 95% CI. Knots were placed at 30, 45, and 60 mL/min/1.73 m² of eGFR. An eGFR of 60 mL/min/1.73 m² was used as a reference.

Abbreviations: eGFR, estimated glomerular filtration rate; NIHSS, National Institutes of Health Stroke Scale; mRS, modified Rankin scale.

sFigure-6. Associations between joint eGFR and proteinuria with unfavorable functional outcome

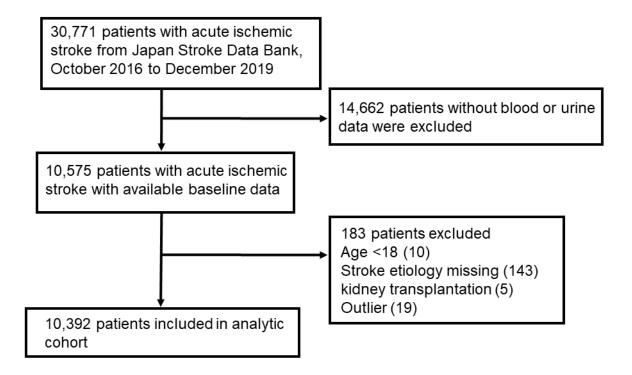
Odds ratio of renal impairment (eGFR [\geq 60/<60 mL/min/1.73 m²] with/without proteinuria) for unfavorable functional outcomes in ischemic stroke subtypes. The category of eGFR \geq 60 mL/min/1.73 m² without proteinuria was set as a reference. Risk estimates were adjusted for age, sex, hypertension, diabetes, history of stroke, previous statin use, previous antiplatelet, alteplase use or/and endovascular treatment, premorbid mRS and initial NIHSS.

Abbreviations: eGFR, estimated glomerular filtration rate; SD, standard deviation.

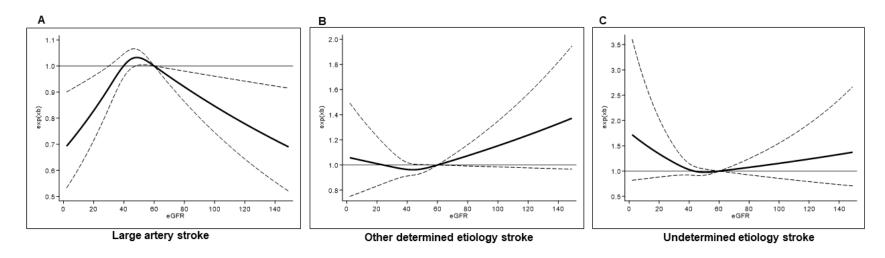
sFigure e-7. Proportions of in-hospital death in ischemic stroke etiologies according to the eGFR categories (eGFR <60, eGFR 45-59, eGFR <45, mL/min/1.73 m²) or proteinuria

Distribution of in-hospital death in ischemic stroke subtypes according to eGFR strata and proteinuria

Abbreviations: eGFR; estimated glomerular filtration rate

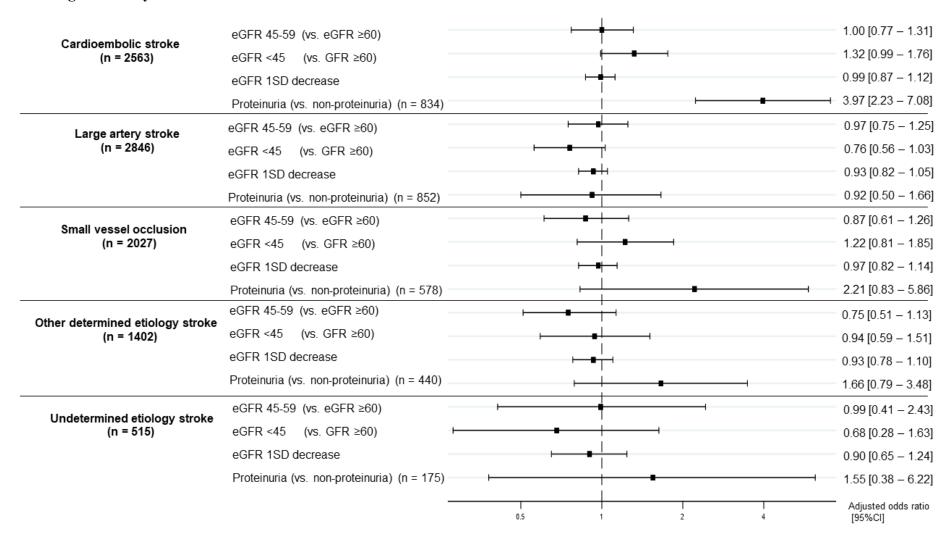

sFigure e-8. Associations between renal impairment and in-hospital death in ischemic stroke subtypes

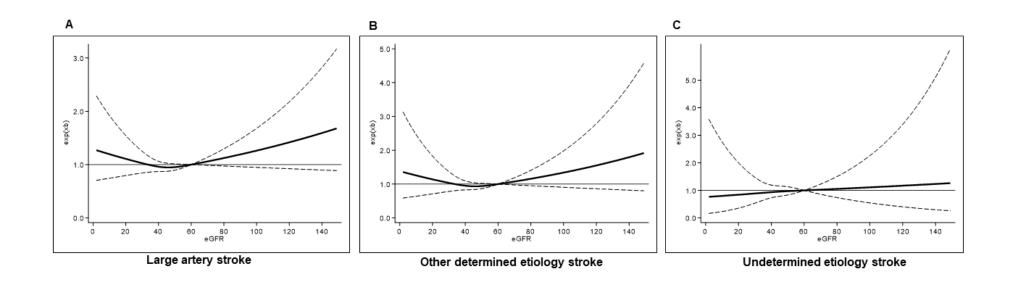
Odds ratio of renal impairment (eGFR 45-59 mL/min/1.73 m², eGFR <45 mL/min/1.73 m², decreases in eGFR, or proteinuria) vs. eGFR ≥60 or non-proteinuria for in-hospital death in ischemic stroke subtypes

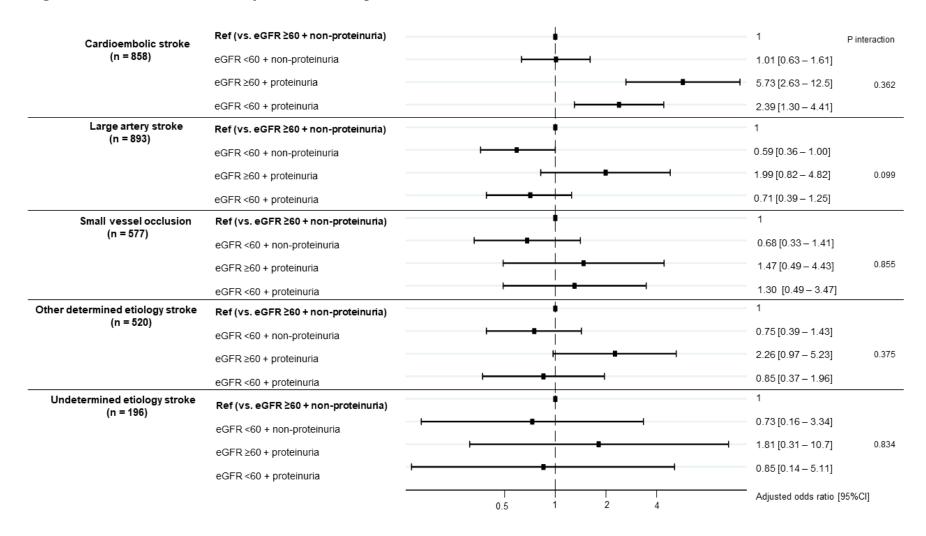

Risk estimates were adjusted for age, sex, hypertension, diabetes, history of stroke, previous statin use, previous antiplatelet, alteplase use or/and endovascular treatment, premorbid mRS and initial NIHSS.

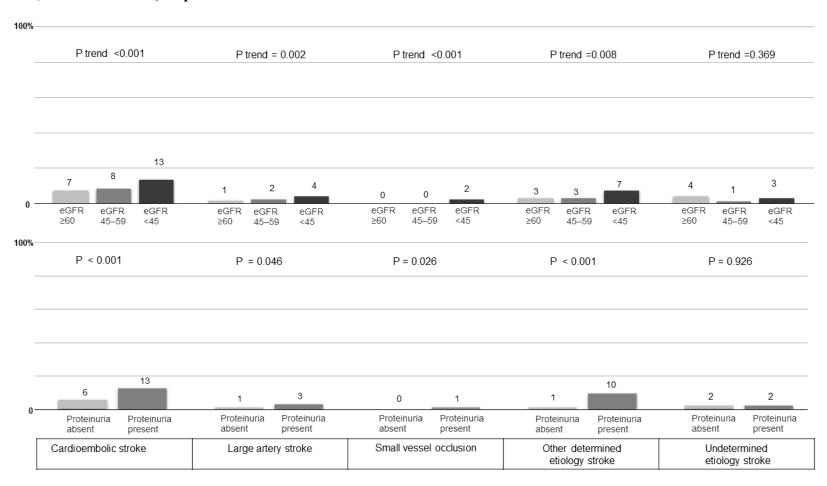
Abbreviations: eGFR, estimated glomerular filtration rate; SD, standard deviation; mRS, modified Rankin scale; NIHSS, National Institutes of Health Stroke Scale; NE; not evaluable

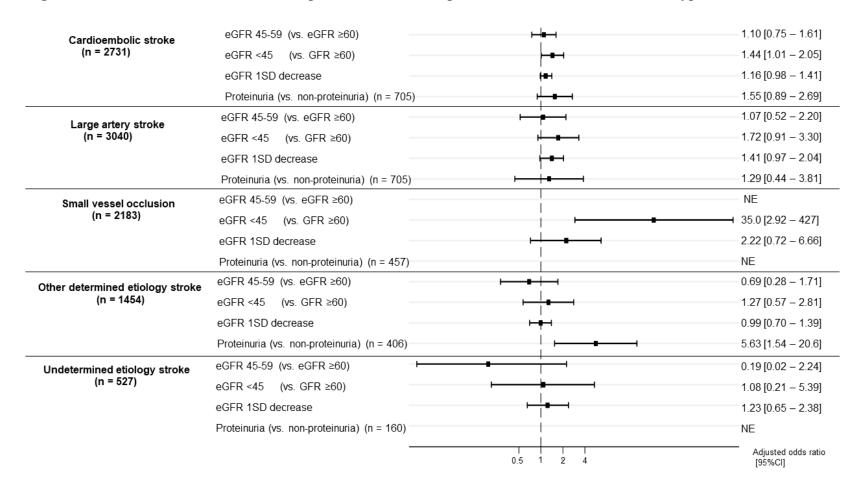

sFigure e-1. Patient flow chart


sFigure e-2. Associations between all eGFR levels and ischemic stroke subtypes (large artery stroke, other determined etiology stroke, and undetermined etiology stroke)


sFigure e-3. Associations of joint eGFR and proteinuria with ischemic stroke subtypes


sFigure e-4. Associations between renal impairment and unfavorable functional outcome in ischemic stroke subtypes in patients not receiving hemodialysis


sFigure e-5. Associations between eGFR levels and unfavorable functional outcomes in ischemic stroke subtypes (large artery stroke, other determined etiology stroke, and undetermined etiology stroke)


sFigure e-6. Associations between joint eGFR and proteinuria with unfavorable functional outcome

sFigure e-7. Proportions of in-hospital death in ischemic stroke etiologies according to the eGFR categories (eGFR <60, eGFR 45-59, eGFR <45, mL/min/1.73 m²) or proteinuria

sFigure e-8. Associations between renal impairment and in-hospital death in ischemic stroke subtypes

