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ABSTRACT 

Objective. To test the hypothesis that a multicenter-validated computer deep learning algorithm 

detects MRI-negative focal cortical dysplasia (FCD). 

Methods. We used clinically-acquired 3D T1-weighted and 3D FLAIR MRI of 148 patients 

(median age, 23 years [range, 2-55]; 47% female) with histologically-verified FCD at nine 

centers to train a deep convolutional neural network (CNN) classifier. Images were initially 

deemed as MRI-negative in 51% of cases, in whom intracranial EEG determined the focus. For 

risk stratification, the CNN incorporated Bayesian uncertainty estimation as a measure of 

confidence. To evaluate performance, detection maps were compared to expert FCD manual 

labels. Sensitivity was tested in an independent cohort of 23 FCD cases (13±10 years). 

Applying the algorithm to 42 healthy and 89 temporal lobe epilepsy disease controls tested 

specificity. 

Results. Overall sensitivity was 93% (137/148 FCD detected) using a leave-one-site-out cross-

validation, with an average of six false positives per patient. Sensitivity in MRI-negative FCD 

was 85%. In 73% of patients, the FCD was among the clusters with the highest confidence; in 

half it ranked the highest. Sensitivity in the independent cohort was 83% (19/23; average of 

five false positives per patient). Specificity was 89% in healthy and disease controls. 

Conclusions. This first multicenter-validated deep learning detection algorithm yields the 

highest sensitivity to date in MRI-negative FCD. By pairing predictions with risk stratification 

this classifier may assist clinicians to adjust hypotheses relative to other tests, increasing 

diagnostic confidence. Moreover, generalizability across age and MRI hardware makes this 

approach ideal for pre-surgical evaluation of MRI-negative epilepsy.  

Classification of evidence. This study provides Class III evidence that deep learning on 

multimodal MRI accurately identifies FCD in epilepsy patients initially diagnosed as MRI-

negative. 
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INTRODUCTION 

Focal cortical dysplasia (FCD), a surgically-amenable developmental epileptogenic brain 

malformation, presents with cortical thickening on T1-weighted MRI, as well as hyperintensity 

and blurring of the gray-white matter interface on FLAIR images. While these features are often 

visible to the naked eye, FCD may be overlooked and only found at surgery 1. MRI-negative 

patients represents a major diagnostic challenge 2.  

Currently, benchmark automated detection methods fail in 20–40% of patients 3-6, 

particularly those with subtle FCD, and suffer from high false positive rates 7. Conversely, deep 

neural networks outperform state-of-the-art methods at disease detection (see 8,9 for review). 

Specifically, convolutional neural networks (CNNs) learn abstract concepts from high-

dimensional data alleviating the challenging task of hand-crafting features 10. The integration 

of convolutional operators that implicitly encode spatial covariance of neighboring voxels 

(rather than treating each voxel independently) with nonlinearity capturing complex patterns 

and variability is expected to optimize the detection of the full FCD spectrum. Notably, with 

regards to diagnostic performance, the deterministic nature of conventional algorithms does not 

permit risk assessment of the automated decisions, a requirement to be integrated into clinical 

diagnostic systems. Alternatively, Bayesian CNNs provide a distribution of predictions from 

which the mean and variance can be computed, the latter being interpreted as a measure of 

uncertainty 11.  

Here, we tested the hypothesis that a multicenter-validated computer deep learning 

algorithm operating directly on T1-weighted and FLAIR MRI voxel detects MRI-negative focal 

cortical dysplasia (FCD).  

METHODS 

The primary question of this study was to assess whether a deep learning algorithm operating 

on multimodal MRI has significant diagnostic value, including in MRI-negative patients. Our 
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automated algorithm was trained and validated on a multicenter dataset of patients with 

histologically confirmed FCD. We ruled out sources of spectrum bias 12 by evaluating 

specificity against healthy individuals as well as a disease control cohort of patients with 

temporal lobe epilepsy (TLE) and histologically confirmed hippocampal sclerosis (HS). To 

minimize incorporation bias 12, the classifier was iteratively trained and tested using a leave-

one-site-out scheme; i.e., the classifier was trained iteratively on all sites minus the one held-

out for testing; this guaranteed the out-of-fold validation in which tested cohorts were never 

part of the training. Moreover, the classifier trained on the full dataset was tested on an 

independent cohort of patients that were never part of training. According to the Classification 

of evidence schemes of the American Academy of Neurology 

(https://www.neurology.org/sites/default/files/ifa/loe.pdf) 13, this study satisfies the rating for 

Class III evidence for diagnostic accuracy, demonstrating that deep learning operating on 

multimodal MRI has significant diagnostic value, including in MRI-negative patients, with 

85% sensitivity. 

Subjects 

We studied consecutive retrospective cohorts from nine tertiary epilepsy centers worldwide 

with histologically validated FCD lesions collected from October 2012 to January 2018 and in 

whom both 3D T1-weighted MRI and 3D FLAIR were acquired as part of the clinical 

presurgical investigation 14. The TLE cohort included both patients with MRI-visible HS (n=49; 

comparable to MRI-positive FCD) and those in whom the MRI was unremarkable, but the 

histological examination of the surgical specimen revealed the presence of subtle HS (n=40; 

comparable to MRI-negative, histology-positive FCD). Patients had been investigated for drug-

resistant epilepsy with a standard presurgical workup including neurological examination, 

assessment of seizure history, neuroimaging, and video-EEG recordings.  
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On histological examination of the surgical specimen 15, FCD Type-II was defined as 

disrupted cortical lamination with dysmorphic neurons in isolation (IIA, n=70) or together with 

balloon cells (IIB, n=78). At a mean±SD postoperative follow-up of 31.2±14.4 months (range: 

12-78 months), 103 patients (70%) became seizure-free (Engel-I), 33 (22%) had rare disabling 

seizures (Engel-II), nine (6%) had worthwhile improvement (Engel-III) and three (2%) had no 

improvement (Engel-IV); in patients with Engel-III and IV, the resection was incomplete as the 

FCD encroached eloquent areas in primary cortices (7 in sensorimotor, 2 in primary visual and 

3 in language areas); the residual lesion and extent of resection were evaluated on post-

operative MRI. 

Standard Protocol Approvals, Registrations, and Patient Consents 

The Ethics Committees and institutional review boards at all participating sites (S1-S9) 

approved the study, and written informed consent was obtained from all participants.  

MRI acquisition and image processing 

High-resolution 3D T1-weighted and 3D FLAIR MRI images were acquired in all individuals 

14. All images were obtained on 3T scanners; one site provided additional cases with 1.5T MRI. 

Imaging parameters are listed on Table e-1 (available from Dryad: 

doi.org/10.5061/dryad.h70rxwdgm). MRI data was de-identified; files were converted from 

DICOM to NIfTI with header anonymization. T1-weighted images were linearly registered to 

the MNI152 symmetric template. FLAIR images were linearly mapped to T1-weighted MRI in 

MNI space. T1-weighted and FLAIR underwent intensity non-uniformity correction 16 

followed by intensity standardization with scaling of values between 0 and 100. Finally, images 

were skull-stripped using an in-house deep learning method (v1.0.0: https://github.com/NOEL-

MNI/deepMask) trained on manually corrected brain masks from patients with cortical 

malformations. Two experts manually segmented lesions on co-registered T1-weighted and 

https://github.com/NOEL-MNI/deepMask
https://github.com/NOEL-MNI/deepMask
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FLAIR images; inter-rater Dice agreement was 0.92±0.10 [calculated as 2|M1∩M2|/(|M1|+|M2|), 

where M1 = label 1, M2 = label 2, M1 ∩ M2 = intersection of M1 and M2].  

Classifier design  

Figure 1 and Figure e-1 (available from Dryad: doi.org/10.5061/dryad.h70rxwdgm) illustrate 

the design. The full methodology is described in Additional Methods (available from Dryad: 

doi.org/10.5061/dryad.h70rxwdgm). 

Data sampling and network architecture. In each individual, we thresholded FLAIR images by 

z-normalizing intensities and discarding the bottom 10 percentile intensities; this internal 

thresholding resulted in a mask containing voxels within the grey matter (GM) and its interface 

with the white matter (WM). This mask was then used to extract 3D patches (i.e., regions of 

interest centered around a given voxel) from co-registered 3D T1-weighted and FLAIR images, 

which served as input to the network. Notably, 3D patches seamlessly sampled the FCD across 

orthogonal planes and tissue types. We designed a cascaded system in which the output of the 

first CNN (CNN-1) served as input to the second (CNN-2). CNN-1 aimed at maximizing the 

detection of lesional voxels; CNN-2 reduced the number of misclassified voxels, removing 

false positives (FPs) while maintaining optimal sensitivity. In brief, for each test subject, 3D 

T1-weighted and FLAIR patches were fed to CNN-1. To discard improbable lesional 

candidates, the mean of 20 forward passes (or predictions) was thresholded at >0.1 (equivalent 

to rejecting bottom 10 percentile probabilities); voxels surviving this threshold served as the 

input to sample patches for CNN-2.  

Estimation of prediction uncertainty. Bayesian inference in deep CNNs with large number of 

parameters is computationally intensive 17. By probabilistically excluding neurons (or units) 

after every convolutional layer during training, the Monte Carlo dropout method 18 simulates 

an ensemble of neural networks with diverse architectures, thus preventing overfitting without 

compromising on accuracy. This procedure provides a distribution of posterior probabilities at 
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each voxel resulting from multiple stochastic forward passes through the classifier; their 

variance provides a measure of uncertainty. Here, we used the mean and variance of 50 voxel-

wise forward passes to generate probability and uncertainty maps. The mean probability map 

was binarized by thresholding at >0.7 (empirically determined by setting the cluster-level FP 

rate to <6) and underwent a post-processing routine entailing morphological erosion, dilation 

and extraction of connected components (>75 voxels) to remove flat blobs and noise, a 

procedure that resulted in non-overlapping clusters. To evaluate performance, this detection 

map was compared to the manual expert annotation. 

Transforming uncertainty into confidence and ranking. For each cluster of the detection map, 

we estimated confidence by computing the median uncertainty across its voxels; we then 

aggregated uncertainties across all clusters and normalized values between 0 and 1 to obtain a 

measure of confidence. All clusters were then ranked based on their confidence estimates with 

the highest confidence cluster as rank 1, second highest confidence cluster rank 2, and so on 

until all clusters surviving the threshold (probability >0.7 and spatial extent >75 voxels) had 

been ranked. Confidence maps were evaluated together with a diagram plotting lesion 

probability against lesion ranking, with rank 1 signifying highest confidence to be lesional, 

regardless of cluster size.  

Performance evaluation  

To assess performance, we employed a leave-one-site-out cross-validation by which the 

classifier trained on eight sites was tested iteratively on the held-out site until all sites had served 

as testing set. A minimum of one voxel co-localizing with the manually segmented FCD 

(ground truth label) was deemed as TP, any detection not co-localizing as FP. Consistent with 

previous FCD detection literature 3,19-21, we deemed partial overlap to be sufficient without 

requiring the detection to be completely within the expert label. Demographics and dataset 

stratification are shown in Table 1. In addition, we evaluated the algorithm trained on the 
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complete dataset of the 148 FCD patients on an independent cohort of 23 FCD cases (11 

females; 13±10 years; 70% MRI-negative) from S1 and S2. 

Patient-level (i.e., lesion-level) evaluation metrics included sensitivity (P, L) = |P1∩L1|/|L1| 

and specificity (P, L) = |P0∩L0|/|L0|, where P is the model prediction and L the ground truth 

label; L1 and L0 signify voxels predicted as positive (lesional) and negative (not lesional), while 

P1 and P0 represent the same for model predictions. We evaluated specificity as the absence of 

any findings by applying the algorithm trained on the complete dataset of FCD patients to 

healthy controls and TLE disease controls; in other words, specificity was calculated as the 

proportion of healthy or disease controls in whom no FCD lesion cluster was falsely identified. 

Site-wise area under the receiver operating characteristic curve (AUC) evaluated voxel-wise 

classification performance (i.e., the true positive (TP) vs. FP rate) stratified by sites. 

We evaluated the spatial relation between lesional clusters and FPs in patients as well as 

healthy and disease controls. To this end, we generated a lesional probability map by overlaying 

all manually segmented FCD labels; the Dice coefficient quantified the overlap between the 

FCD probability map and both the group-wise probability and uncertainty maps of FPs. 

Pearson’s correlation quantified associations between probability and uncertainty, and 

between age and the number of FPs. Biserial correlation evaluated association between MRI-

negative status and the number of FPs. Spearman’s correlation quantified association between 

lesion rank and probability. Nonparametric permutations (10,000 iterations with replacement) 

tested group differences at p<.05 (two-tailed), with Bonferroni correction for multiple 

comparisons. 

Data availability statement 

These datasets are not publicly available as they contain information that could compromise 

the privacy of research participants. The source code and pre-trained model weights are 

available for download online (v1.0.0 at GitHub: https://github.com/NOEL-MNI/deepFCD,). 

https://github.com/NOEL-MNI/deepFCD
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In addition, a derivative dataset composed of lesional and non-lesional patches from 148 FCD 

patients is available as a Hierarchical Data Format dataset (available from Zenodo: 

doi.org/10.5281/zenodo.3239446). 

RESULTS 

Demographics. The primary site (S1) comprised 62 FCD patients (33 females; mean±SD 

age=25±10 years) and control groups consisting of age- and sex- matched healthy individuals 

(n=42; 22 females; 30±7 years), and patients with TLE and histologically verified HS (n=89; 

47 females; age: 31±8). Across the remaining eight sites (S2-S9), the cohort comprised 86 FCD 

patients (36 females; age: 20±14). In 75 patients (51%) in whom routine MRI evaluation was 

initially reported as unremarkable in the initial readings of the neuroradiologists at each 

participating center, the location of the seizure focus was established using intracranial EEG.  

Patient-level performance. The classifier’s overall sensitivity based on leave-one-site-out 

cross-validation was 93% (137/148 FCD lesions detected), with 6±5 FP clusters per patient. 

Stratifying children and adults, sensitivity was 98% for the former (52/53; 7±5 FP clusters) and 

89% (85/95; 5±5 FP) for the latter. Notably, 85% of MRI-negative and 100% of MRI-positive 

lesions were detected. When testing the classifier on the independent cohort (using the model 

trained on the complete dataset of the 148 FCD patients), overall sensitivity was 83% (19/23 

FCD lesions detected; 5±3 FP clusters per patient) with 100% of MRI-positive and 75% of 

MRI-negative lesions detected. Specificity was 90% in healthy (4/42 with 2±1 FP clusters) and 

89% in TLE disease controls (10/89, 1±0 FP cluster). With respect to the latter, specificity was 

similar between MRI-positive HS (92%; 5/49, 1±0 FP cluster) and MRI-negative HS (88%; 

5/40, 1±0 FP cluster). Per-site sensitivity and FP rates are shown in Table 2.  

Voxel-wise performance. The median AUC was 0.83 (range, 0.72–0.87) indicative of high 

sensitivity (high TP rates) and specificity (low FP rates), with comparable performance across 

sites (Figure 2A). 
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Analysis of confidence. In 73% of patients, the FCD lesion was among the five clusters with the 

highest confidence; in half of them, it ranked the highest, with a mean probability of 72% (95% 

confidence interval, 69%–76%; Figure 2B). Lesion rank negatively correlated with probability, 

i.e., the lower the rank, the higher the probability of being lesional (r = −0.69, p = 0.005; Figure 

2C). Moreover, confidence for a cluster to be lesional centered around 1 (i.e., 100% 

confidence), while for FPs it centered around zero (Figure 2D). Representative MRI-negative 

cases are shown in Figure 3 and 4.  

Spatial distribution of FCD and FPs. The majority of FCD lesions were located within the 

frontal lobes (Figure 5A). Overall, FPs in patients, healthy and disease controls (Figure 5B) 

were found in the insula and the parahippocampus (Dice overlap with FCD: 21%, 22% and 

34%, respectively). Notably, FPs in healthy and disease controls overlapped to a greater extent 

(Dice: 52%) and exhibited low confidence to be lesional (i.e., high uncertainty); conversely, 

FPs in FCD patients tended to display high confidence to be lesional (p = 0.013). Coordinates 

for the lesion and FPs are listed on Tables e-2 and e-3 (available from Dryad: 

doi.org/10.5061/dryad.h70rxwdgm). The incidence of FP clusters was negatively correlated 

with age (r = −0.23, p = 0.004), namely the younger the patients the higher the number of FPs. 

Number of FPs was not significantly different between MRI-positive and MRI-negative 

patients. 

DISCUSSION 

MRI-negative FCD represents a major diagnostic challenge. To define the epileptogenic area 

patients undergo long and costly hospitalizations for EEG monitoring with intracerebral 

electrodes, a procedure that carries risks similar to surgery itself 22,23. Moreover, patients 

without MRI evidence for FCD are less likely to undergo surgery and consistently show worse 

seizure control compared to those with visible lesions 24,25. Here, we present the first deep 

learning method for automated FCD detection trained and validated on histologically verified 
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data from multiple centers worldwide. The classifier uses T1- and T2-weighted FLAIR, 

contrasts available on most recent MR scanners 14, operates in 3D voxel space without laborious 

pre-processing and feature extraction, and pairs predictions with confidence. It yields the 

highest performance to date with a sensitivity of 93% using a leave-one-site-out cross-

validation and 83% when tested on an independent cohort, while maintaining a high specificity 

of 89% both in healthy and disease controls. Importantly, deep learning detected MRI-negative 

FCD with 85% sensitivity, thus offering a considerable gain over standard radiological 

assessment. Results were generalizable across cohorts with variable age, hardware and 

sequence parameters. Taken together, such characteristics and performance promise potential 

for broad clinical translation. Notwithstanding these advantages, good quality scans are 

essential to guarantee valid results, as motion can mimic lesions 14; we thus advise against 

analysing low-quality motion-corrupted scans. Notably, while a classification III for the level 

of evidence was assigned to our study, the current AAN scheme for diagnostic accuracy does 

not specify criteria for designs based on machine learning algorithms. A revision of these 

guidelines, ideally disease-specific, would likely better reflect the level of evidence for studies 

relying on artificial intelligence.  

Deep learning: moving beyond conventional automated FCD detection  

Over the last decade, several automated FCD detection algorithms have been developed, the 

most recent relying on surface-based representations 3,6,19,20. While the majority operate on T1-

weighted MRI, recent methods have combined T1-weighted and T2-weighted MRI for 

improved performance 6,21. A few have used shallow (single layer) artificial neural networks 

4,21. Notably, all require arduous pre-processing, including manual corrections of tissue 

segmentation and surface extraction, thus precluding integration into clinical workflow. 

Importantly, they rely on domain knowledge to engineer features. These procedures generally 

fail to detect subtle lesions 7. In comparison, our approach offers several advantages. Firstly, to 
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optimize lesion detection across the FCD spectrum, we leveraged the power of CNNs that 

recursively learn complex properties from the data itself. Secondly, contrary to previous 

medical imaging applications relying on 2D orthogonal sampling, we extracted 3D patches to 

model the spatial extent of FCD across multiple slices and tissue types. Operating in true 

volumetric domain allowed assessing the spatial neighborhood of the lesion, whereas prior 

surface-based methods have considered each vertex location independently. Thirdly, restricting 

training to the GM reduced nearly infinite dataset to a manageable finite set. Finally, by relying 

on subject-wise feature normalization, rather than group-wise, our implementation obviates the 

need for a matched normative dataset, an expensive and time-intensive undertaking. Compared 

to previous deep learning methods 26-28 in which clinical description was scarce to absent, and 

information on the FCD expert labels and histological validation of lesions was not provided, 

our study relied on best-practice multimodal MRI, histologically-validated lesions, and a large 

dataset. Moreover, in previous work FLAIR images in presumably MRI-positive patients were 

acquired with inter-slice gap ranging from 0.5 to 1.0 mm 26,27, and the acquisition parameters 

for the 3D T1-weighted images were different from those in healthy and disease controls 28.  

Notwithstanding practical advantages of our method, a general limitation of deep learning 

is the reduced transparency of the process leading to the predictions, a consequence of the high 

dimensionality of learned features. The trade-off is a richer encoding and learning of complex 

spatial covariances of intensity and morphology that is beyond the ability of human eye. To 

maximize transparency and validity, we trained our algorithm on manual expert labels of 

histologically-validated FCD lesions. In addition to a rigorous cross-validation design, 

including applying the classifier to a totally independent cohort of FCD patients, our predictions 

were stratified according to confidence to be lesional. Notwithstanding these precautions, as for 

many diagnostic tests, the convergence of findings with independent tests is essential to 

increase confidence even further.    
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Estimation of generalizability is key to any diagnostic method. To guarantee unbiased 

evaluation, training and testing datasets should remain distinct. We thus devised a strategy in 

which the model was iteratively trained on patient data from all sites, except the one held-out. 

this guaranteed out-of-distribution validation in which tested cohorts were never part of the 

training. This leave-one-site-out cross-validation simulated a real-world scenario with optimal 

bias-variance trade-off compared to conventional train-test split of k-folds; it also exploited the 

full richness of data during training and the out-of-distribution samples from a single site during 

testing. Moreover, the classifier trained on the full dataset was tested on a totally independent 

cohort of patients that were never part of training. Consistent high performance across cohorts, 

as well as modest FPs in healthy and disease controls, demonstrate that our cascaded CNN 

classifier learns and optimizes parameters specific to FCD, a fact validated by histological 

confirmation.  

Human-in-the-loop machine learning: key to clinical translation   

In machine learning, human-in-the-loop refers to the need for human interaction with the 

learner to improve human performance, machine performance, or both. Human involvement 

expedites the efficient labeling of difficult or novel cases that the machine has previously not 

encountered, reducing the potential for errors, a requirement of utmost importance in 

healthcare. In FCD, the outcome of surgery depends heavily on the identification of the lesion; 

it is thus crucial to decide which putative lesional clusters are significant. In this context, 

thresholding the final probabilistic mean map is essential to evaluate the balance between true 

positive and false positives. Notably, to guarantee an objective assessment of sensitivity and 

specificity across cohorts, in this study we defined an empirical threshold. However, in clinical 

practice, a judicious approach would imply adaptive thresholding of the maps at single-patient 

level, taking into account independent tests. Indeed, in 5/11 of undetected MRI-negative cases, 

the lesion could be resolved when modulating the threshold in light of seizure semiology and 
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electrophysiology. Besides thresholding, confidence is pivotal in any diagnostic assessment, an 

aspect so far neglected. To fill this gap, we incorporated a Bayesian uncertainty estimation that 

enables risk stratification. In practical terms, we ranked putative lesional clusters in a given 

patient based on confidence, thus assisting the examiner to gauge the significance of all 

findings. In 73% of cases the FCD was among the top five clusters with the highest confidence 

to be lesional; in half of them it ranked the highest. In the remaining 27%, lesions manifested 

with low confidence; in a real-world scenario, when location is unknown (i.e., no FCD label is 

available), a concerted evaluation including electro-clinical and other imaging tests is likely to 

increase diagnostic certainty 29. While the good performance of our classifier is also attributable 

to the richness of the training set including a large spectrum of anatomical locations, eleven 

MRI-negative FCD remained unresolved, with six located in the orbitofrontal cortex, an area 

for which limited data was available for training. The prospective use of our classifier trained 

on the entire cohort would likely reclaim these lesions. 

The analysis of the spatial distribution of FPs was moderately comparable across FCD 

patients, healthy and disease controls, mainly involving the insula and parahippocampal region 

bilaterally. A possible explanation may lie in the similarity of the cytoarchitectonic signature 

of these cortices with FCD histopathological traits. Notably, the three-layered cortex of the 

hippocampal formation, the transitional mesocortex of the parahippocampus and the 

mesocortex-like insula present with indistinct boundaries between laminas compared to the 

typical six-layered neocortex 30,31; these cortices may thus mimic dyslamination and blurring. 

Notably, however, our algorithm detected 3/3 FCD lesions in the insula with high degree of 

confidence. Since these lesions were provided by different sites, the leave-one-site-out strategy 

guaranteed that each training set had at least one lesion. Nonetheless, adding more lesions to 

the training set would increase the classifier’s ability to learn better discriminative features in 

the insular region. Alternatively, an impact of developmental trajectory 32 on FPs is suggested 
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by high prevalence in younger patients, possibly in relation to age-varying tissue contrast, 

cortical myelination and maturation, which may also manifest as lesion-like on MRI. 

Conversely, registration errors are less likely in our voxel-based method as compared to 

surface-based algorithms. For the latter, to align a subject’s brain into a standardized stereotaxic 

space registration strongly depends on the accuracy of GM/WM segmentation, while our 

method does not require tissue segmentation. Notably, some FPs were only seen in FCD cases, 

particularly in fronto-central regions and tended to gather around the lesion, suggesting 

subthreshold peri-lesional anomalies not included in the manually-segmented label 3,33. Given 

the favorable surgical outcome, a biological explanation for FPs in our FCD cohort may thus 

include a combination of normal cytoarchitectural nuances and non-epileptogenic peri-lesional 

developmental anomalies. In a previous study 3, we found FPs to manifest as abnormal sulcal 

depth, while the FCD lesions had higher cortical thickness relative to controls. Sulcal 

abnormalities in cortical malformations have been described in the proximity and at a distance 

of MRI-visible lesions and are thought to result from disruptions of neuronal connectivity and 

WM organization 3,34. Finally, it is also plausible that some FP clusters my represent dysplastic 

tissue, an entity so far reported only in five cases 35. 

 While our algorithm was trained on histologically verified FCD-II lesions and is mainly 

aimed at identifying MRI-negative FCD, it is possible that it could identify difficult-to-detect 

low grade tumors that may resemble dysplastic lesions, a rare instance occurrence since these 

tumors are generally easy to see on routine MRI. Regardless, the dilemma of differentiation of 

FCD from low grade tumors uniquely based on MRI features may arise; the differential 

diagnosis is then evaluated using additional tests, including MR spectroscopy. On the other 

hand, our algorithm may be useful in identifying associated often-occult dysplastic lesions in 

the peritumoral area 36. 
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Federated machine learning: a path to the future  

Traditional machine learning adopts a centralized approach that requires training datasets to be 

aggregated in a single center. A significant obstacle to clinical adoption of such strategy is 

privacy and ethical concerns. Federated learning 37, on the other hand, is a distributed approach 

that enables multi-institutional collaboration without sharing patient data. Our proposed 

approach of patch-based data augmentation is privacy-preserving since only a portion of each 

patient’s data is collated and randomized before exposure to the neural network, an 

implementation that can be flexibly re-configured to support federated learning. As the data 

corpus diversifies and expands to include more edge cases, performance and confidence of 

future classifiers will inevitably improve.  
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Table 1. Demographics and dataset stratification for cross-site validation. 

TESTING TRAINING 

Site N 

Age 

(mean±SD 

yrs) 

% 

Female 
Sites N 

Age 

(mean±SD 

yrs) 

% 

Female 

S1-I 45 27±9 49% S1-II, S2-S9 103 20±13 46% 

S1-II 17 18±9 65% S1-I, S2-S9 131 23±13 44% 

S2 08 11±6 25% S1, S3-S9 140 23±12 48% 

S3 05 22±17 80% S1-S2, S4-S9 143 23±12 45% 

S4 11 8±7 36% S1-S3, S5-S9 137 24±12 44% 

S5-I 10 23±14 30% S1-S4, S5-II, S6-S9 138 23±13 48% 

S5-II 12 13±12 42% S1-S4, S5-I, S6-S9 136 22±12 47% 

S6 11 31±15 64% S1-S5, S7-S9 137 22±12 45% 

S7 09 33±13 33% S1-S6, S8-S9 139 22±13 47% 

S8 07 24±13 43% S1-S7, S9 141 22±13 47% 

S9 13 26±8 38% S1-S8 135 22±13 47% 

 

Abbreviations. S = site; N: sample size; yrs = years; I and II refer to different MRI scanners for the same 

site 
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Table 2. Site-specific demographics and performance metrics. 

Site N 

Age 

(mean±SD 

yrs) 

% 

Female 

MRI+/ 

MRI- 
Sensitivity FPs 

     All patients MRI-   

S1-I 45 27±9 49% 13/32 39/45 (87%) 26/32 (81%) 7±4 

S1-II 17 18±9 65% 2/15 15/17 (88%) 13/15 (87%) 7±4 

S2 08 11±6 25% 5/3 8/8 (100%) 3/3 (100%) 6±5 

S3 05 22±17 80% 2/3 5/5 (100%) 3/3 (100%) 1±1 

S4 11 8±7 36% 11/0 11/11 (100%) n/a 8±6 

S-I 10 23±14 30% 8/2 9/10 (90%) 1/2 (50%) 10±6 

S5-II 12 13±12 42% 11/1 12/12 (100%) 1/1 (100%) 6±7 

S6 11 31±15 64% 6/5 11/11 (100%) 5/5 (100%) 3±3 

S7 09 33±13 33% 2/7 8 /9 (89%) 6/7 (86%) 8±6 

S8 07 24±13 43% 6/1 6/7 (86%) 0/1 (0%) 6±5 

S9 13 26±8 38% 7/6 13/13 (100%) 6/6 (100%) 1±2 

Total 
14

8 
23±13 47% 49/51% 137/148 (93%) 64/75 (85%) 6±5 

Indep 23 13±10 48% 30/70% 19/23 (83%) 12/16 (75%) 5±3 

 
Abbreviations. N: sample size; FPs: false positive rate per cohort; MRI+/-: MRI positive/negative; SD: 

standard deviation; yrs: years; I and II refer to different MRI scanners for the same site; n/a: not 

applicable; Indep: independent validation cohort from S1 and S2. 
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Figure 1. Classifier design. Training and inference (or testing) workflow. In the cascaded 

system the output of CNN-1 serves as an input for CNN-2. CNN-1 maximizes the detection of 

lesional voxels; CNN-2 reduces the number of misclassified voxels, removing false positives 

(FPs) while maintaining optimal sensitivity. The training procedure (indicated by dashed 

arrows) operating on T1-weighted and FLAIR MRI, extracts 3D patches from lesional and non-

lesional tissue to yield tCNN-1 (trained model 1) and tCNN-2 (trained model 2) models with 

optimized weights (indicated by vertical dashed-dotted arrows). These models are then used for 

subject-level inference. For each unseen subject, the inference pipeline (solid arrows) uses 

tCNN-1 and generates a mean (μdroupout) of 20 predictions (forward passes); the mean map is 

then thresholded voxel-wise to discard improbable lesion candidates (μdroupout > 0.1). The 

resulting binary mask serves to sample the input patches for the tCNN-2. A mean probability 

and uncertainty maps are obtained by collating 50 predictions; uncertainty is transformed into 

confidence. The sampling strategy (identical for training and inference) is only illustrated for 

testing. 

Figure 2. Performance evaluation. A. Site-wise area under the receiver operating 

characteristic curve (AUC) using the leave-one-site-out cross-validation (solid colored lines 

with values; black dotted line represents a naïve classifier). B. Frequency of lesions according 

to their rank. Rank 1 signifies highest confidence to be lesional. 73% of lesions were distributed 

across ranks 1 to 5. C. Lesion rank plotted against probability of being lesional shows a 

significant correlation with FCD voxels having low rank values (high confidence) and high 

probability. D. Distribution (kernel density estimation) of confidence for lesional and false 

positive (FP) clusters; lesions exhibit high confidence values, while FP clusters show low 

confidence. 

Figure 3. Automated detection of MRI-negative FCD. The left panels show the T1-weighted 

MRI and the prediction probability maps with the lesion circled. The middle plots show the 



 

 

 

Gill et al. 22 

probability of the lesion and false positive (FP) clusters sorted by their rank; the superimposed 

line indicates the degree of confidence for each cluster. The right panels illustrate the location 

of the FCD lesion (rank 1, highest confidence; purple) and FP clusters (ranks 2-5; blue). In 

these cases, the lesion has both highest confidence (rank 1) and high probability (>0.8). 

Figure 4. Representative FCD detection examples. Seven representative MRI-negative FCD 

lesions across sites are shown (top row: prediction overlaid on the FLAIR; the flame scale 

indicates the probability strength). The bottom labels are interpreted as site-patient-

ID/age/gender. The arrows indicate the ground-truth lesion location. 

Figure 5. Probability distributions of FCD and false positives. A. Lesional probability maps 

of manually labelled FCD lesions superimposed on glass brains. B. Probability maps of 

confidence of FP clusters across cohorts. Colors indicate proportions (in %) of lesional (A) and 

FPs (B) voxels. 

 


