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ABSTRACT 

Objective. MRI fails to reveal hippocampal pathology in 30-50% of temporal lobe 

epilepsy (TLE) surgical candidates. To address this clinical challenge, we developed 

an automated MRI-based classifier that lateralizes the side of covert hippocampal 

pathology in TLE.  

 

Methods. We trained a surface-based linear discriminant classifier that uses T1-

weighted (morphology) and T2-weighted as well as FLAIR/T1 (intensity) features. The 

classifier was trained on 60 TLE patients (mean age: 35.6; 58% female) with 

histologically-verified hippocampal sclerosis (HS). Images were deemed as MRI-

negative in 42% of cases based on neuroradiological reading (40% based on 

hippocampal volumetry). The predictive model automatically labelled patients as left 

or right TLE. Lateralization accuracy was compared to electro-clinical data, including 

side of surgery. Accuracy of the classifier was further assessed in two independent TLE 

cohorts with similar demographics and electro-clinical characteristics (n=57; 58% 

MRI-negative).  

 

Results. The overall lateralization accuracy was 93% (95%; CI 92% - 94%), regardless 

of HS visibility. In MRI-negative TLE, the combination of T2 and FLAIR/T1 intensities 

provided the highest accuracy both in the training (84%, area-under-the-curve (AUC): 

0.95±0.02) and the validation cohorts (Cohort 1: 90%, AUC: 0.99; Cohort 2: 76%, 

AUC: 0.94). 

  

Conclusion. This prediction model for TLE lateralization operates on readily available 

conventional MRI contrasts and offers gain in accuracy over visual radiological 

assessment. The combined contribution of decreased T1- and increased T2-weighted 

intensities makes the synthetic FLAIR/T1 contrast particularly effective in MRI-

negative HS, setting the basis for broad clinical translation. 
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INTRODUCTION  

Many patients with medically-refractory temporal lobe epilepsy (TLE) present with 

hippocampal sclerosis (HS) 1. MRI is instrumental for the identification of this 

pathology that may form the substrate of the epileptogenic focus, thus streamlining the 

presurgical evaluation 2. The main imaging characteristics of HS are loss of 

hippocampal volume, often associated with hypointense T1- and hyperintense T2-

weighted signal. The biological validity of these features has been established through 

combined MRI-histopathological analyses showing that decreased cell density and 

gliosis positively correlate with atrophy 3 and T2 hyperintensity 4, respectively. In 

clinical practice, nevertheless, MRI still fails to reveal hippocampal pathology in 30-

50% of surgical candidates with unambiguous electroclinical evidence of TLE 5. This 

wide range may be at least partly attributable to suboptimal imaging protocols and 

limited specialized experience 5. In addition, while quantitative analyses, including 

hippocampal volumetry 6, voxel-based morphometry 7, T2 relaxometry 8, and 

measurements of FLAIR signal intensity 9,10 have been shown to be more sensitive 

compared to visual evaluation, they remain underused (see 11 for review). Notably, the 

in vivo signature of HS is modulated by the severity of loss of neurons and gliosis 12,13, 

with subtle forms typified by isolated gliosis 11 often evading detection 1,14. Many 

patients with unrevealing MRI may thus undergo intracranial EEG, a procedure that 

carries risks similar to resective surgery 15 and incurs high costs 16.  

Despite the large body of neuroimaging literature assessing hippocampal structural 

integrity in TLE, the vast majority of studies have addressed group-level changes 5,6,17. 

Individual analyses, on the other hand, have commonly exploited single contrasts 

normalized to the distribution of healthy subjects and rarely addressed the challenge of 

lateralizing MRI-negative patients 6,18,19. Our purpose was to implement a machine 
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learning framework to lateralize HS in individual patients relying on readily available 

conventional T1- and T2-weighted contrasts 20. As HS is typically characterized by T1-

weighted hypointensity and T2-weighted hyperintensity, we also generated a synthetic 

contrast by dividing the FLAIR intensity by T1-weighted intensity, thereby maximizing 

their combined contributions to detect the full HS spectrum. We applied the classifier 

to MRI features of HS in TLE and assessed generalizability in two independent cohorts. 

 

MATERIALS AND METHODS 

We present an algorithm for automated lateralization of the epileptogenic lesion in TLE, 

with the prediction model labeling patients as left TLE (LTLE) or right TLE (RTLE). 

In short, we trained a surface-based linear discriminant classifier using volume and 

signal intensity based on T1- and T2-weighted MRI, and FLAIR/T1 of patients with 

histologically-verified HS. Lateralization accuracy was compared to electro-clinical 

data, including side of surgery. To address generalizability, accuracy was tested in two 

independent validation TLE cohorts with similar electro-clinical and imaging 

characteristics. Classifiers were cross-validated using a 5-fold scheme with 100 

repetitions. Evaluation performance was further assessed via receiver operating 

characteristics curves (ROC) and area under the curve (AUC). 

Subjects  

Training cohort. Sixty consecutive patients with TLE and validated HS were collected 

from 2010 to 2014 retrospectively. All had research-dedicated 3T MRI comprising 

high-resolution 3D T1-weighted, 3D FLAIR, and 2D T2-weighted images, as well as 

equivalent clinical MRI sequences as part of the presurgical evaluation. Patients had 

been investigated for drug-resistant epilepsy with a standard presurgical workup 

including neurological exam, history of seizures, and EEG telemetry. Clinical 

neuroradiological diagnosis of HS was based on morphological anomalies of the 
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hippocampus (atrophy, loss of internal structure, decreased T1 and increased T2). Side-

by-side comparison of morphology, including shape, and signal was done on coronal 

images, while sagittal cuts yielded antero-posterior evaluation, thereby easing the 

visibility of distribution of signal anomalies.  

Validation cohorts. Validation cohorts comprised 56 drug-resistant TLE patients 

collected from 2015 to 2017.  The internal cohort comprised 43 consecutive cases seen 

at the Montreal Neurological Hospital retrospectively (26 with histologically-validated 

HS). The external cohort consisted of 14 TLE patients from the Freiburg Epilepsy 

Center in Germany (13 with histologically-validated HS). Patients in both cohorts 

underwent the same clinical and MRI evaluation as the Training cohort. Imaging was 

done either on a 3 Tesla Siemens Trio or Prisma scanners.  

Standard protocol approval, registrations, and patients consents 

The Research Ethics boards of the Montreal Neurological Hospital and the Freiburg 

Medical Centre gave approval of the study and all participants gave informed consent. 

MR imaging and processing 

In the Training cohort and controls, images were acquired on a 3T TimTrio using a 32-

arrays coil with the HARNESS-MRI protocol 20, including 3D T1-weighted MPRAGE 

(TR=2300 ms, TE=2.98 ms, TI =900 ms, flip angle=9, matrix=256×256, 

FOV=256×256mm, yielding 1 cubic mm voxels; 6.35 mins), 3D FLAIR (TR=5000 ms, 

TE=390 ms, TI=1800 ms, matrix=230×230, FOV=207×207 mm, 0.9 cubic mm; 6.22 

mins) and 2D turbo spin echo T2 sequence (TR=10,810 ms, TE=81 ms, flip angle=119°, 

matrix=512×512, FOV=203×203, 0.4×0.4×2.0 cubic mm; 5.5 mins). The acquisition 

parameters were similar for the Validation cohorts.  

 In all subjects, T1-weighted, FLAIR and T2-weighted images underwent field non-

uniformity correction, followed by a standardization of signal, as well as alignment to 
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the ICBM-152 template 21. FLAIR and T2-weighted images were registered to T1 MRI 

in MNI-space. A surface-based multi-template algorithm 22 automatically segmented 

the hippocampus in the CA1-3, CA4-DG and subiculum 23; this algorithm has shown 

excellent Dice overlap indices with manual segmentations 22.     

Classifier design 

Data sampling. We mapped the medial sheet, namely, a surface along the central axis 

of each hippocampal subfield; this allowed extracting features minimizing effects of 

partial volume 24.  We obtained the following features on the medial sheets: 

a) Columnar Volume. Neuronal loss is associated with atrophy on MRI, which we 

estimated by calculating columnar volume as previously 24. 

b) T2 signal intensity. Gliosis is characterized by increased T2 signal intensity. We 

computed the relative intensity of T2 at every voxel 25.  

c) FLAIR/T1 intensity. To maximize the detection of HS, typically characterized by T1-

hypo- and T2-weighted hyper-intensity, we generated a synthetic contrast by dividing 

the FLAIR by T1-weighted intensity, thereby maximizing their combined contribution. 

 After z-normalizing each feature with respect to healthy controls, we generated 

asymmetry maps computed as [2x(left-right)/(left+right)], which served as inputs to the 

algorithm. The gold standard for training and cross-validation consisted of TLE patients 

with histologically-validated HS (Training cohort). 

Architecture (Figure 1A). Our algorithm aims at lateralizing the epileptogenic lesion 

by assigning patients to either left or right TLE. Lateralization is formulated as a 

classification task, leveraging Linear Discriminant Analysis (LDA) as the classifier. 

LDA requires virtually no parameter tuning while operating efficiently in low-

dimensional space with limited number of features, as in our case, obviating the need 

for more complex or nonlinear algorithms with significant time requirement. The 
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training procedure consists of two components. Firstly, we generate the optimal ROI, 

namely a spatial constraint for feature sampling and averaging derived from the 

asymmetry maps of columnar volume, T2 and FLAIR/T1 intensities. More specifically, 

paired t-tests (or Hotelling’s T-squared for feature combinations) contrasted 

corresponding vertices of the ipsi- and contralateral hippocampal subfields (relative to 

the epileptogenic focus) to highlight regions exhibiting the largest feature asymmetry. 

The resulting t-map was then thresholded from zero to the highest absolute t-statistic to 

generate binarized t-maps. Notably, the choice of the threshold determined the spatial 

extent of the binarized t-map, and consequently, the discriminative ability of the 

averaged asymmetry features. Therefore, this binarized t-map (or ROI) served as hyper-

parameter optimized through a nested cross-validation procedure. This process selected 

the most performant model 26 (i.e., the optimal ROI or threshold; Figure 1B) while 

mitigating the propagation of ground truth information across folds (also known as data 

leakage 27). Subsequently, for each feature, values sampled on the asymmetry maps 

(constrained by the optimal ROI) were averaged across the hippocampus. Finally, these 

values served as inputs to the LDA which determined laterality (i.e., LTLE or RTLE) 

based on the learned statistical patterns. 

Predictors considered for modeling. To evaluate the differential impact of features and 

their combinations, we tested the lateralization performance of the classifier when 

using: i) columnar volume; ii) T2-weighted intensity; iii) FLAIR/T1 intensity; and iv) 

a combination of T2 and FLAIR/T1. Notably, volumetry was excluded from the 

combinatorial analysis since it is not expected to be discriminative for MRI-negative 

patients, as their hippocampal size is generally within normative range of healthy 

controls 25.  
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Performance evaluation. For the Training cohort, performance was assessed through a 

5-fold (nested) cross-validation, repeated 100 times. Stratification ensured that each 

fold had proportional representation of both LTLE and RTLE. Briefly, after randomly 

splitting the Training cohort into five folds (or partitions), the classifier was trained on 

four and tested iteratively on the one held-out until all folds had served as a test set; this 

procedure was repeated 100 times. To assess generalizability, algorithmic performance 

was tested on two Validation cohorts. To guarantee the highest confidence, we trained 

the classifier based on a random sample comprising 80% of patients from the Training 

cohort, repeating the process 100 times. 

In designing this classifier, our objective was to determine the side of the pathology 

(not whether it is present or absent). Our primary performance validation metric was 

thus accuracy, which reflects the average of two classes (RTLE and LTLE); we did not 

intend to evaluate the class dichotomy of a TLE patient versus a healthy control. We 

also obtained ROC and AUC curves. Lateralization accuracy and AUC were measured 

for each 5-fold validation repetition and averaged across them. The Brier score was 

used as a measure of calibration 28; values close to zero signify a well-calibrated 

classifier. Comparisons among experiments were assessed with the Friedman test with 

Bonferroni correction. 

Statistical analysis   

Group Analysis. Statistical analysis was carried out with SurfStat (Matlab). For each 

subject, we first z-scored vertex-wise values (columnar volume, normalized T2 

intensity, and FLAIR/T1) based on healthy controls. We then sorted the left and right 

values into ipsilateral and contralateral with respect to the focus. Student test assessed 

differences between patients and controls, correcting at a family-wise error of 

PFWE<0.05 using random field theory. 
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Data availability 

The source codes for: (1) generating blade surfaces (as described in the Data Sampling 

section); (2) data sampling (intersection of blade surfaces and volumes); (3) computing 

columnar volumes; and (4) training and testing the classifier are available from the 

corresponding author. at github.com/NOEL-MNI/Automated_TLE_Lateralization. We 

also make available the optimal ROI and the pre-trained model (based on the Training 

cohort) to enable lateralization prediction on a test subject without the need to collect 

data to train the classifier.  

 

RESULTS 

Table 1 details clinical and demographic features of the training and validation cohorts. 

Clinical, demographics and imaging characteristics  

Training cohort. In 42 patients, the focus side was determined by EEG monitoring with 

scalp electrodes showing unequivocal temporal lobe seizures onset (and >70% of 

spikes); in cases with non-localized seizure onset or rapid inter-hemispheric seizure 

spread (n=18), lateralization was established using stereoencephalography (SEEG). 

Accordingly, patients were dichotomized into LTLE (n=29; 17 females; mean±SD 

age=35.6±11 yrs; range=18-59 yrs) and RTLE (n=31; 18 females; 35.5±11 yrs; 17-62 

yrs). As per the reading of the neuroradiologist, 35 patients (35/60=58%) had ipsilateral 

atrophy of the hippocampus together with T2 hypersignal (MRI-positive), while the 

MRI was reported as unremarkable in 25 (42%; MRI-negative). No other anomalies 

were seen. Performing volumetry had minimal impact, with only a single MRI-negative 

patient becoming MRI-positive with an ipsilateral hippocampal volume reduction of -

2.5 SD below the mean of healthy controls, bringing the total count to 36 MRI-positive 

(60%) and 24 (40%) MRI-negative patients.  

 Based on histopathological review of the resected specimen, 40 patients had severe 
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neuronal cell loss and astrogliosis: 23 in CA1-3 and CA4 (ILAE HS-1), 9 CA1 

predominant (HS-2), 9 CA4 (HS-3); 19 patients showed isolated gliosis 1. Notably, all 

MRI-positive patients had HS, while MRI-negative patients presented with both mild 

HS (5/24=21%; 3 Type-2 and 2 Type-3) and isolated gliosis (19/24=79%). At a follow-

up of >2 years, Engel I was reported in 48 (80%) patients, Engel II in 9 (15%), Engel 

III in 3 (3.3%), Engel IV in one (1.7%). Thirty-six healthy individuals (18 females; 

32.2±7.3 yrs; range = 23-53) formed the control group.  

Validation cohorts. Based on the same criteria as in the Training cohort, patients were 

dichotomized into LTLE (n=35; 25 females; mean±SD age=37.2±11 years; range=19-

58 years) and RTLE (n=22; 11 females; 36.9±12 years; 18-54 years) based scalp EEG 

(n=36) and SEEG (n=21). Twenty-four patients (24/57=42%) has ipsilateral 

hippocampal volume reduction and high T2 (MRI-positive), while the MRI was 

reported as unremarkable in 33 (58%; MRI-negative). No patient had hippocampal 

atrophy on volumetry. Thirty-nine patients had surgery. Histopathology showed severe 

HS in 24 (HS-1=15; HS-2=6; HS-3=3) and isolated gliosis in 15 1. 

Comparisons. We observed no difference among cohorts for age (one-way ANOVA, 

p=0.73), sex (Chi-Square test, 2=0.57, p=0.75), proportion of MRI-positive and MRI-

negative patients (2=5.43, p=0.07) and surgical outcome (2=3.59, p=0.17). In all three 

cohorts, the proportion of isolated gliosis was higher than HS in MRI-negative patients 

(Training Cohort: 2=38.13, p<0.001; Validation Cohort 1: 2=13.16, p<0.001; 

Validation Cohort 2: 2=9.12, p=0.002). Proportion of patients who underwent SEEG 

was higher in MRI-negative patients with respect to MRI-positive patients in the 

Training Cohort (2=7.62, p=0.006) and in the Validation Cohort 1 (2=4.61, p=0.032). 

The proportion of LTLE was higher than RTLE in Validation Cohort 1 (2=6.96, 

p=0.03). 
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Group analysis  

Compared to the healthy subjects (Figure 2), patients exhibited diffuse ipsilateral 

atrophy across all subfields (CA1-3: t=-2.5, PFWE<0.0001; subiculum: t=-2.2, 

PFWE<0.0001; CA4-DG: t=2.3, PFWE<0.0001). Moreover, marked ipsilateral T2 

hypersignal signal was present in CA1-3 (t=2.8, PFWE<0.0001) and CA4-DG (t=3.9, 

PFWE<0.0001). FLAIR/T1 was also increased across all subregions (CA1-3: t=3.5, 

PFWE<0.0001; CA4-DG: t=4.3, PFWE=0.004; subiculum: t=2.4, PFWE<0.0001), with 

additional subtle increases contralaterally. Anomalies in MRI-positive patients had 

similar distributions across subfields, albeit more severe (volume: t=-3.9 to -4.4, 

PFWE<0.0001; T2 signal: t=3.6 to 5.4, PFWE<0.0001; FLAIR/T1: t=2.7 to 6.0, 

PFWE<0.002). Conversely, MRI-negative patients did not show any volumetric 

alteration, but subtle T2 increases in the ipsilateral CA4-DG (t=2.5, PFWE<0.0001) and 

CA1-3 (t=2.1, PFWE=0.014), as well as FLAIR/T1 hyperintensities along all subfields 

(CA1-3: t=2.5, PFWE<0.0001; CA4-DG: t=2.9, PFWE =0.005; subiculum: t=2.1, 

PFWE<0.0001). 

Performance evaluation 

In the Training cohort, the overall lateralization accuracy based on individual features 

were similar for FLAIR/T1 (85±3%) and T2 signal (86±2%), which were superior to 

volumetry (77±3%; p<0.05). The combination of T2 and FLAIR/T1 yielded the best 

overall performance of 93±2%, with an accuracy of 84±5% in MRI-negative and 

100±1% in MRI-positive TLE (Table 2). Notably, the classifier’s lateralization was 

consistently correct across 90/100 iterations in both MRI-negative and MRI-positive 

patients. AUC metrics (Table 3) confirmed the discriminative capability of FLAIR/T1 

(0.80±0.05) and T2 Signal (0.79±0.03) over volumetry (0.46±0.06, PBonferroni<0.05) in 

MRI-negative patients; the combination of T2 and FLAIR/T1 yielded the highest AUC 

(0.95±0.03, PBonferroni<0.05). The Brier score demonstrated better calibration of the 
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classifier when the combination of T2 and FLAIR/T1 is used, relative to other scenarios 

(0.097±0.016, PBonferroni<0.05). In the Validation cohorts, the combination of T2 and 

FLAIR/T1 also yielded the best overall performance with >90% lateralization accuracy. 

Moreover, AUC showed the discriminative capability of this combination in MRI-

negative patients (1.00±0.00 and 0.94±0.12 for Validation cohorts 1 and 2, 

respectively). The Brier score reflected the improved calibration when combining T2 

and FLAIR/T1 for Validation cohort 1 relative to single features (0.069±0.015, 

PBonferroni<0.05), while in Validation cohort 2 similar scores were obtained for combined 

T2 and FLAIR/T1 (0.152±0.053), and FLAIR/T1 (0.160±0.020). Examples of 

lateralization predictions are shown in Figure 3. Figure 4 highlights the robustness of 

combining T2 and FLAIR/T1 to variability in the training dataset, as evidenced by the 

low variance of the average ROC curve.  

 

DISCUSSION 

In epilepsy surgery, converging independent diagnostic tests aim at the lateralization of 

the epileptic focus based on neurophysiology and MRI localization of the epileptogenic 

lesion. When either of these two diagnostic pillars are unclear or unrevealing, additional 

investigations are needed. Invasive EEG recordings may clarify the focus lateralization, 

for example in cases with non-localized seizure onset or rapid inter-hemispheric seizure 

spread. Moreover, MRI post-processing and machine learning may clarify lesion 

location in cases with normal MRI. Here, we present the first decision-support system 

to lateralize HS in TLE using structural MRI. The classifier relies on automatically-

segmented hippocampal subfields and feature sampling derived from conventional T1- 

and T2-weighted contrasts available on most MR scanners 20. Our method yields an 

overall accuracy of >90% regardless of the degree of HS visibility on conventional 
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MRI. Importantly, it lateralizes MRI-negative TLE with >80% accuracy, offering 

considerable gain over visual radiological assessment.  

Our purpose was to develop a prediction model with the potential to be implemented 

into clinical practice. Importantly, to ensure a valid biological foundation, we trained 

the LDA algorithm on well-known, histologically validated features of HS. Notably, 

when using a conventional z-score comparison with healthy controls, we were able to 

lateralize pathology in only a fraction (<15%) of MRI-negative TLE patients using 

either volumetry, T2 or FLAIR/T1. This disparity in performance relative to machine 

learning can be explained mainly by the use of a spatial ROI allowing for sampling of 

features relevant to lateralization. This optimal ROI relies on the population-wise 

feature difference between the ipsi- and contralateral hippocampal subfields, targeting 

regions with the most marked inter-hemispheric asymmetries. Through the training 

procedure, the extent of the ROI was adjusted iteratively, thereby boosting lateralization 

accuracy in single cases. In contrast, a z-score normalization of the features of interest 

across the whole hippocampus (or each subfield) would likely include non-pertinent 

information, leading to suboptimal lateralization accuracy. More recent work based on 

non-conventional contrasts, including diffusion 29 and network parameters 30–32, has 

targeted whole-brain anomalies in patients with MRI-positive TLE. Only two previous 

studies have addressed the lateralization challenge in both MRI-positive and MRI-

negative TLE 33,34, operating  on T1-derived volumetry with groups predefined by side 

and visibility of hippocampal atrophy on MRI. Notably, in one study 33, besides the lack 

of histopathological confirmation, anatomical structures identifying TLE groups were 

mainly outside the mesiotemporal lobe, different across groups and difficult to interpret, 

particularly in MRI-negative patients. While methodologically appropriate, such a 

design may be unsatisfactory in a real-world scenario of previously unseen cases.  
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Our study presents several novelties. Firstly, it uses conventional contrasts 20. 

Secondly, we targeted morphological and signal alterations of the hippocampus, the 

surgically-amenable substrate of mesial TLE. Thirdly, effects of partial volume were 

minimized by surface-based image processing. For individual prediction, we opted for 

a LDA, a robust and easy to interpret classifier 35. Notably, the classifier operated in 

regions that were identical in both MRI-negative and MRI-positive TLE. From a 

statistical standpoint, to mitigate optimistic estimates of lateralization accuracy 

(otherwise known as model overfitting) that would occur using a conventional leave-

one-out scheme, we kept the training and testing datasets separate using a cross-

validation with 5-folds and 100 repetitions. The effectiveness and generalizability of 

our algorithm is also evidenced by the high degree of consistency across repetitions, 

which is further supported by high AUC values in both the training and validation 

cohorts. Indeed, when applying the classifier to independent datasets of unseen cases 

including both MRI-positive and MRI-negative patients, accuracy reached 90% correct 

lateralization. Despite excellent performance, our method presents some limitations. 

Notably, contrary to previous work 36, our design does not allow discriminating patients 

from controls. Moreover, our sample size for training may be considered as relatively 

small with respect to general machine learning standards. Nevertheless, our numbers 

compare favorably to work in epilepsy. Indeed, prior studies analyzing imaging 

acquired at 3T were based on a maximum of 80 individuals when both training and 

testing sets were combined 33,36. In contrast, our study targeted a significantly larger 

cohort of patients with 60 individuals for training and 57 for validation.   

 High performance and generalizability of the classifier across cohorts, scanners and 

parameters set the basis for wide translation. Nevertheless, successful integration into 

clinical practice rests on key requirements. In line with recent educational initiatives 
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20,37, clinicians should develop competencies in neuroimaging spanning from basic 

visual diagnostics to the interpretation of advanced post-processing methods and 

machine learning. The availability of the source code is intended to foster novel 

synergies between engineers and clinicians within the epilepsy community and should 

be regarded as a first step towards an online application or a tool integrated into patients’ 

electronic health record.  

The imaging correlates of HS associating neuronal loss and gliosis have been long 

established 3. At the group-level, all features in our MRI-positive patients were 

significantly abnormal, including extensive ipsilateral hippocampal volume loss and 

increased T2-weighted as well as FLAIR/T1 signal intensities compared to healthy 

controls. Therefore, volumetry was as efficient to map pathology and to lateralize 

individual patients as any other intensity features. Conversely, MRI-negative cases, the 

vast majority with isolated gliosis, exhibited only subtle ipsilateral signal anomalies 

and no volumetric alterations (aside from one with reduced volume). Expectedly, when 

applying machine learning to volumetry alone, performance was at a chance level, 

whereas a combination of intensity features derived from T2- and T1-weighted MRI 

(i.e., T2 together with FLAIR/T1) outperformed any unimodal contrast, thereby 

offering substantial gain over expert visual assessments. While our results are in 

agreement with previous studies demonstrating the value of T2 signal in the detection 

of gliosis 4,19,38, FLAIR/T1 was more effective to lateralize the seizure focus. A possible 

biological explanation may be that in MRI-negative TLE severe gliosis co-exists with 

subtle neuronal loss below the 10% sensitivity threshold of qualitative histopathology 

39. In addition, since 30% of these patients had mild HS, it is plausible that 3D 

FLAIR/T1 maximized the combined sensitivity of both contrasts to detect the full 

spectrum of hippocampal pathology. From a practical standpoint, our results also 
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suggest that FLAIR/T1 may be a good alternative to 2D coronal T2-weighted images 

more prone to movement artifacts. 

Non-diagnostic MRIs have led to an increase in invasive studies. By offering a non-

invasive decision-support, advanced imaging analysis circumvents some of the 

limitations and risks related to invasive diagnostics 40, possibly reducing the need for 

prolonged costly hospitalizations. Conversely, since the presurgical evaluation of drug-

resistant TLE is multidisciplinary, an MRI-derived binary lateralization outcome (right 

vs. left) may not be sufficient per se for surgical decision-making. However, the 

increased availability of imaging-derived classification algorithms ought to pave the 

way for systems that integrate diverse sources of evidence, including other imaging 

modalities such as PET, as well as electro-clinical data to increase diagnostic yield and 

certainty. Finally, the methodology presented in this study may be expanded to other 

epilepsy syndromes associated with HS, including cortical developmental 

malformations. 
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Table 1. Training and Validation cohorts characteristics. 

 

 Age Female SEEG TLE(L/R)  HS/G Engel-I 

Training       

MRI pos (36) 36±11 53% 17% 17/19 36/0 89% 

MRI neg (24) 35±11 67% 50%* 12/12 5/19* 67% 

Validation 1       

MRI pos (16) 39±12 75% 19% 10/6* 13/0 92% 

MRI neg (27) 36±10 60% 52%* 20/7* 3/10* 70% 

Validation 2       

MRI pos (8) 33±13 50% 25% 4/4 8/0 100% 

MRI neg (6) 42±11 67% 67% 1/5 0/5* 100% 

Age: in years ± standard deviation; (n): sample size; neg: negative; pos: positive; MRI +/-: MRI-

positive/negative; L/R: EEG lateralization; HS/G: hippocampal sclerosis/isolated gliosis; *: higher 

proportions in a given category.  
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Table 2. Lateralization performance (accuracy) across Training and Validation cohorts.  

 

(n): sample size; */**: increased/best lateralization accuracy with respect to at least one/any model 

(Friedman p<0.05, after correction). 95% confidence intervals shown in brackets.  

 

 

 

  

 VOLUME T2 INTENSITY FLAIR/T1 T2 + FLAIR/T1 

     
Training      

MRI pos (36) 

 

97 ± 2% 

[97% 98%] 

96 ± 2% 

[96% 96%] 

95 ± 2% 

[94% 95%] 

100 ± 1%**  

[100% 100%] 

MRI neg (24) 

 

45 ± 7% 

[44% 47%] 

71 ± 5%* 

[70% 72%] 

71 ± 5%* 

[70% 73%] 

84 ± 5%** 

[83% 85%] 

Validation 1 

 

 

    

MRI pos (16) 

 

95 ± 3% 

[95% 96%] 

96 ± 3% 

[95% 96%] 

100 ± 2%** 

[99% 100%] 

100 ± 0%** 

[100% 100%] 

MRI neg (27) 

  

61 ± 8% 

[59% 62%] 

78 ± 4% 

[78% 79%] 

88 ± 4%** 

[88% 89%] 

90 ± 4%** 

[90% 91%] 

Validation 2 

 

    

MRI pos (8) 

 

99 ± 5% 

[98% 100%] 

100 ± 0% 

[100% 100%] 

99 ± 3% 

[99% 100%] 

100 ± 0% 

[100% 100%] 

MRI neg (6) 

 

55 ± 11% 

[53% 57%] 

49 ± 5% 

[48% 50%] 

70 ± 7%** 

[69% 71%] 

76 ± 13%** 

[73% 78%] 
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Table 3. Lateralization performance (AUC) across cohorts.  

 

(n): sample size; */**: increased/best lateralization accuracy with respect to at least one/any model 

(Friedman p<0.05, corrected for multiple comparisons). 95% confidence intervals are shown in brackets.  

 

  

 VOLUME T2 INTENSITY FLAIR/T1 T2 + FLAIR/T1 

     
Training      

MRI pos (36) 

 

1.00 ± 0.01 

[1.00 1.00] 

1.00 ± 0.00 

[1.00 1.00] 

0.98 ± 0.01 

[0.98 0.99] 

1.00 ± 0.00 

[1.00 1.00] 

MRI neg (24) 

 

0.46 ± 0.06 

[0.45 0.47] 

  0.79 ± 0.03* 

[0.79 0.80] 

  0.80 ± 0.05* 

[0.78 0.81] 

0.95 ± 0.03** 

[0.95 0.96] 

Validation 1 

 

 

    

MRI pos (16) 

 

1.00 ± 0.00 

[1.00 1.00] 

1.00 ± 0.00 

[1.00 1.00] 

1.00 ± 0.00 

[1.00 1.00] 

1.00 ± 0.00 

[1.00 1.00] 

MRI neg (27) 

  

0.65 ± 0.06 

[0.64 0.66] 

   0.91 ± 0.02* 

[0.91 0.92] 

  0.93 ± 0.04* 

[0.93 0.94] 

1.00 ± 0.00** 

[1.00 1.00]  

Validation 2 

 

    

MRI pos (8) 

 

1.00 ± 0.03 

[0.98 1.00] 

1.00 ± 0.00 

[1.00 1.00] 

1.00 ± 0.00 

[1.00 1.00] 

1.00 ± 0.00 

[1.00 1.00] 

MRI neg (6) 

 

0.61 ± 0.18 

[0.57 0.65] 

0.65 ± 0.16 

[0.62 0.68] 

0.76 ± 0.10* 

[0.74 0.78] 

0.94 ± 0.12** 

[0.91 0.96] 
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Figure legends  

Figure 1. Classifier design. A. Training. The objective of training was to define an 

optimal region of interest (ROI) used to sample MRI features of hippocampal sclerosis.  

(1) For each feature in the training set, paired t-tests compared corresponding vertices 

of the ipsi- and contralateral hippocampal subfields, z-scored with respect to healthy 

controls (only maps of T2-weighted anomalies shown). (2) The resulting group-level t-

map was exhaustively thresholded from 0 to the highest value and binarized. (3) For 

each threshold, we overlaid the binarized t-map on the asymmetry map of each 

individual and computed the average across subfields. (4) We then trained one linear 

discriminant analysis (LDA) classifier per threshold and retained the model yielding 

the highest lateralization accuracy (here, LDA Model 3, surrounded by the black dotted 

box) and used it to test the classifier. B. Statistical parametric anatomical map of 

optimal ROIs. For each modality, maps show the vertex-wise group-level probability 

of anomalies (optimal ROI) over 100 repetitions of the 5-fold cross-validation 

determined during training.  

 

Figure 2. Group-level findings. Differences in columnar volume, T2 intensity, and 

FLAIR/T1 intensity between patients and controls are mapped on the hippocampal 

subfield surfaces. Results are corrected using random field theory. Red and blue 

indicate increases and decreases, respectively (scaled by Cohen’s d effect size). 

 

Figure 3. Individual lateralization prediction. Examples of lateralization prediction 

in two patients with MRI-positive right TLE (A) and MRI-negative left TLE (B). For 

each case, coronal sections of the T1-weighted and T2-weighted MRI and the synthetic 

FLAIR/T1 contrast (right is right on images) are shown together with the automatically 

generated asymmetry maps for columnar volume, T2-weighted and FLAIR/T1 

intensities. On each map, the dotted line corresponds to the coronal MRI section and 

the optimal ROI (see figure 1) is outlined in black.   

 

Figure 4. ROC curves in MRI-negative TLE. The Receiver Operating Characteristic 

(ROC) curves based on lateralization posterior probabilities from the trained LDA 

model are shown for the Training and Validation Cohorts. X and Y-axes represent the 

lateralization false positive rate (FPR) and true positive rate (TPR), respectively. Dotted 
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blue lines represent individual curves drawn from each validation repetition, thick lines 

(green: columnar volume; purple: T2-weighted intensity; orange: FLAIR/T1 intensity; 

red: T2 + FLAIR/T1) show average ROC curves across iterations, and dashed black 

lines correspond to a random classifier. The average area under the curve (AUC) is 

indicated. The right-most panels show the overlay of all curves for each cohort to 

facilitate comparisons. 

 

 

 

 

 

  


