1	Supplemental Data: A
2	CLINICAL SITES
3	A total of 111 patients had been enrolled by treating physicians at 38 different sites in 10
4	countries. Most enrolling sites were in Europe (N=27), followed by the US (N=6) and
5	Australia/New Zealand (N=5).
6	
7	DATA
8	Data collection
9	Data was collected from available medical records, by means of Case Record Forms (CRF):
10	- Demographic data (age, gender)
11	- Date of onset of symptoms on each eye
12	- Genetic confirmation (mutation)
13	- Best Corrected Visual Acuity (BCVA) (see below)
14	• At start of treatment (Baseline)
15	• At follow-up visits
16	- Date of each visit
17	- Dose
18	- Adverse events
19	

20 Statistical Methods

21	There was no planned sample size as all requests for access to idebenone for eligible patients
22	which were bona fide and unsolicited had been granted. All treating physicians were
23	approached and invited to contribute data from their treated patients.
24	Efficacy criteria was based in the Responder Analyses (CRR, CRS and CRB) (see below)
25	with Best Corrected Visual Acuity (BCVA) as efficacy variable. BCVA was assessed using
26	ETDRS (Early Treatment Diabetic Retinopathy Study) charts with logMAR (logarithm of the
27	minimal angle of resolution) values as units. In cases where VA was assessed using Snellen
28	fraction/units, logMAR values where calculated using standard conversion methods.
29	If VA was > 1.68 logMAR or off-chart (regardless of being assessed as counting fingers,
30	hand motion, light perception or no-light perception) it was imputed to 1.8 logMAR in order
31	to standardize visual acuity data from different physicians. The value 1.8 logMAR was based
32	on the CRR definition: it is considered a CRR any off-chart VA that recovers to at least 1.6
33	logMAR (being 1.6 logMAR the equivalent to reading one full line in the ETDRS chart).
34	Continuous data was summarised using the mean, standard deviation, median, 1st and 3rd
35	quartiles, minimum and maximum. Categorical data was presented in contingency tables with
36	frequencies and percentages.
37	CRR was summarised by means of descriptive statistics and Kaplan-Meier estimates,
38	presented with the 95% confidence interval (using the Greenwood formula) and reverse
39	Kaplan-Meier curves. Unless stated otherwise data was analysed using the observed cases or

missing data were imputed with the last available observation carried forward (LOCF).

42	RATIONALE FOR EFFICACY OUTCOMES (CLINICALLY RELEVANT
43	RECOVERY, CRR, AND CLINICALLY RELEVANT STABILIZATION, CRS)
44	In line with the approach previously used in RHODOS, efficacy can be evaluated both in
45	terms of improvement as well as maintenance of VA. In a rapid and severely progressive
46	disease for which the most frequent outcome is a disabling degree of blindness, recovery of
47	visual function is a desirable outcome. Likewise, prevention of VA deterioration is also a
48	therapeutic objective, especially if achieved when the degree of visual dysfunction is still
49	small and patient's autonomy is preserved.
50	On the other hand, in order to avoid VA variability interfering with efficacy analysis and
51	potentially driving clinically unmeaningful statistical significance, a responder approach was
52	chosen for determining efficacy both in terms of recovery (CRR) and prevention of
53	deterioration or stabilization (CRS).
54	CRR
55	In order to ensure that improvement in VA is clinically meaningful and "recovery" within
56	"off-chart" VA categories is not over-emphasized, a Responder Analysis was employed for
57	the assessment of efficacy of idebenone, in which only patients presenting with a clinically
58	relevant degree of VA recovery would be defined as "responders". This approach reduces the
59	potential for over-emphasizing confounding influences of clinically less important VA
60	changes (e.g. changes between "off-chart" VA categories) and of day-to-day variability in
61	VA. This clinically relevant recovery (CRR) had been reported in the literature ⁸ and was also
62	used in the post-hoc analysis of the RHODOS trial, as well and as an efficacy outcome
1	
63	parameter in the study LEROS (External Natural History Controlled, Open-Label

- 65 Raxone® in Leber's Hereditary Optic Neuropathy (LHON) (ongoing at the date of
- 66 <u>submission</u>). It was also proposed by an international consensus on the management of
- 67 <u>LHON⁴</u>. The criteria for the classification of a responder are described below (see
- 68 <u>Definitions, CRR</u>).
- 69 <u>CRS</u>
- 70 CRS evaluates the capacity of therapy to prevent deterioration into a more severe category of
- 71 visual impairment, without considering the numerical magnitude of VA change intra-
- 72 category. In patients starting therapy when VA is still near normal or moderately impaired
- 73 and, in the context of a rapidly progressing pathology, prevention of further deterioration to
- ⁷⁴ <u>"legal blindness" is important for patient's autonomy. This approach was also employed in</u>
 ⁷⁵ RHODOS.
- 76

77 PATIENT DISPOSITION/ANALYSIS POPULATIONS

- Data from a total of 111 patients was collected. The following populations were defined forthe analysis of safety and efficacy data:
- Safety Population (SP): used for analysis of safety information. It includes all patients
 enrolled in the EAP who received at least one dose of idebenone (111 patients).
- 82 o <u>Efficacy Population</u> (EP): is defined as the sub-population of the SP who carried one
- 83 of the 3 major LHON-causative mtDNA mutations, who had time since onset at
- 84 Baseline of less than 12 months in the most recently affected eye and for whom post-
- 85 Baseline VA efficacy data was available (87 patients).

86

4

87 **DEFINITIONS**

88	- Nadir: Nadir is defined as the value when VA reaches its worst point (highest
89	logMAR value). Time of nadir is the first time that nadir is reached, which can take
90	place at baseline, or during the course of the treatment.
91	
92	- CRR (Clinically Relevant Recovery): It is defined as an improvement:
93	o from "off-chart" (the equivalent of CF, HM, LP or NLP) VA to at least 1.6
94	logMAR value or
95	o of at least 0.2 logMAR value within "on-chart"
96	(cf. Supplemental Figure 1)
97	
98	
99	As response criteria, all eyes/patients qualified as responders (that is, that have
100	CRR) are only considered so when the criteria is evident at the last available
101	observation (last visit). If a patient/eye shows a CRR at a visit during follow-
102	up, but not at the last visit, it is not considered as a responder, and no CRR is
103	accounted for.
104	CRR can be observed when last observation is compared to the baseline value
105	(CRR from Baseline) or when last observation is compared to the nadir (CRR
106	from Nadir).
107	When evaluating CRR in patients it is considered that:

5

108	• a patient has a CRR if at least one eye has a CRR;
109	• time of CRR is the time when the 1st CRR occurred;
110	 improvement of VA at CRR is the improvement observed at the time of 1st
111	CRR;
112	 improvement of VA at last visit is the best improvement observed in both
113	eyes.
114	
115	- CRS (Clinically Relevant Stabilisation of residual VA): is defined as a patient
116	having a logMAR of <1.0 at Baseline (below the threshold of severe vision loss,
117	legal blindness in the United States) in at least one eye and maintaining a logMAR
118	of <1.0 in that eye at their last follow-up assessment. A patient has a CRS if at least
119	one eye has a CRS.
120	
121	- Magnitude of Improvement: "Magnitude of improvement from baseline" is
122	defined as the difference between VA logMAR at the visit and VA logMAR at
123	baseline. "Magnitude of improvement from nadir" is defined as the difference
124	between VA logMAR at the visit and VA logMAR at nadir.
125	\circ A decrease in logMAR of 0.02 (-0.02) is equivalent to an improvement in
126	reading ability of one letter (+1 letter) and an increase in logMAR of 0.02
127	(+0.02) is equivalent to the deterioration in reading ability of one letter (-1
128	letter).
129	

130 -	Visual Impairment Categories: Both at eye and subject level, BCVA values (in
131	logMAR) were classified in three categories (This classification allows to observe
132	changes related to quality of life relevant to the patient's function.)
133	(cf. Supplemental Figure 2)
134	- Off-chart: not reading any letter on the ETDRS chart at 1m (i.e. >1.68
135	logMAR)
136	- From 1.0 to 1.68 logMAR: not reading any letter on the ETDRS chart at 4m
137	(i.e. >1.00 logMAR) but being able to read at least one letter on the ETDRS
138	chart at 1m (i.e. 1.68 logMAR)
139	- <1.0 logMAR: Being able to read at one or more letters on the ETDRS chart at
140	4m.
141	