eAppendix

Detailed mathematical derivation:
Let $\mathrm{E}, \mathrm{U}, \mathrm{M}$ and D be four random variables with

Suppose the linear models among them are:

$$
\begin{aligned}
& \quad U=\alpha_{U}+\beta_{U} E+\varepsilon_{U} \\
& M=\alpha_{M}+\beta_{M} U+\varepsilon_{M} \\
& D=\alpha_{D}+\beta_{D} U+\varepsilon_{D}
\end{aligned}
$$

Assume we have $\mathrm{E} \sim \mathrm{N}\left(\mu_{\mathrm{E}}, \sigma_{E}^{2}\right), \varepsilon_{\mathrm{U}} \sim \mathrm{N}\left(0, \sigma_{U}^{2}\right), \varepsilon_{\mathrm{M}} \sim \mathrm{N}\left(0, \sigma_{M}^{2}\right)$ and $\varepsilon_{\mathrm{D}} \sim \mathrm{N}\left(0, \sigma_{D}^{2}\right)$, where $\mu_{\mathrm{E}}, \sigma_{E}^{2}, \sigma_{U}^{2}, \sigma_{M}^{2}$, and σ_{D}^{2} are known.

$$
\begin{aligned}
& \operatorname{Var}(\mathrm{U})=\beta^{2}{ }_{\mathrm{U}} \sigma_{\mathrm{E}}^{2}+\sigma_{U}^{2}, \\
& \operatorname{Var}(\mathrm{M})=\beta^{2}{ }_{\mathrm{M}} \sigma_{\mathrm{U}}^{2}+\epsilon_{\mathrm{M}}^{2}=\beta^{2}{ }_{\mathrm{M}} \beta^{2}{ }_{\mathrm{U}} \sigma_{\mathrm{E}}^{2}+\beta_{\mathrm{M}}^{2} \epsilon_{\mathrm{U}}^{2}+\sigma_{M}^{2}, \\
& \operatorname{Var}(\mathrm{D})=\beta^{2}{ }_{\mathrm{D}} \sigma_{\mathrm{U}}^{2}+\epsilon_{\mathrm{D}}^{2}=\beta^{2}{ }_{\mathrm{D}} \beta_{{ }_{U}}^{2} \sigma_{\mathrm{D}}^{2}+\beta_{\mathrm{D}}^{2} \epsilon_{\mathrm{U}}^{2}+\sigma_{D}^{2} .
\end{aligned}
$$

Correlation between E and M

Therefore

$$
\begin{align*}
M & =\alpha_{M}+\beta_{M}\left(\alpha_{U}+\beta_{U} E+\varepsilon_{U}\right)+\varepsilon_{M} \\
& =\alpha_{M}+\beta_{M} \alpha_{U}+\beta_{M} \beta_{U} E+\beta_{M} \varepsilon_{U}+\varepsilon_{M} \\
& =\alpha_{M}^{\prime}+\beta_{M}^{\prime} E+\varepsilon_{M}^{\prime}, \tag{1}
\end{align*}
$$

where

$$
\begin{aligned}
\alpha_{\mathrm{M}}^{\prime} & =\alpha_{\mathrm{M}}+\beta_{\mathrm{M}} \alpha_{\mathrm{U}}, \\
\beta_{\mathrm{M}}^{\prime} & =\beta_{\mathrm{M}} \beta_{\mathrm{U}}, \\
\varepsilon_{\mathrm{M}}^{\prime} & =\beta_{\mathrm{M}} \varepsilon_{\mathrm{U}}+\varepsilon_{\mathrm{M}} .
\end{aligned}
$$

Similarly, since

$$
\begin{align*}
& \mathrm{U}=-\frac{\alpha_{D}}{\beta_{D}}+\frac{1}{\beta_{D}} \mathrm{D}-\frac{\varepsilon_{D}}{\beta_{D}}, \\
& \mathrm{M}=\alpha_{\mathrm{M}}+\beta_{\mathrm{M}}\left(-\frac{\alpha_{D}}{\beta_{D}}+\frac{1}{\beta_{D}} \mathrm{D}-\frac{\varepsilon_{D}}{\beta_{D}}\right)+\varepsilon_{\mathrm{M}} \\
&= \alpha_{\mathrm{M}}+\beta_{\mathrm{M}}\left(-\frac{\alpha_{D}}{\beta_{D}}\right)+\frac{\beta_{M}}{\beta_{D}} \mathrm{D}-\frac{\beta_{M}}{\beta_{D}} \varepsilon_{\mathrm{D}}+\varepsilon_{\mathrm{M}} \\
&= \alpha_{\mathrm{M}}{ }_{\mathrm{M}}+\beta_{\mathrm{M}}^{\prime \prime} \mathrm{D}+\varepsilon_{\mathrm{M}}^{\prime \prime}, \tag{2}
\end{align*}
$$

where

$$
\begin{aligned}
& \alpha_{M}^{\prime \prime}=\alpha_{M}-\frac{\alpha_{D} \beta_{M}}{\beta_{D}}, \\
& \beta_{M}^{\prime \prime}=\frac{\beta_{M}}{\beta_{D}} \\
& \varepsilon^{\prime \prime}{ }_{M}=\varepsilon_{M}-\frac{\beta_{M}}{\beta_{D}} \varepsilon_{D} .
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
\operatorname{cov}(\mathrm{M}, \mathrm{E}) & =\beta_{\mathrm{M}} \beta_{\mathrm{U}} \sigma_{\mathrm{E}} \sigma_{\mathrm{M}}, \\
\operatorname{cov}(\mathrm{M}, \mathrm{U}) & =\beta_{\mathrm{M}} \sigma_{\mathrm{U}} \sigma_{\mathrm{M}}, \\
\operatorname{cov}(\mathrm{M}, \mathrm{D}) & =\frac{\beta_{\mathrm{M}}}{\beta_{\mathrm{D}}} \sigma_{\mathrm{D}} \sigma_{\mathrm{M}} .
\end{aligned}
$$

Correlation between E and D

Consider the correlation between E and D.

$$
\begin{align*}
D & =\alpha_{D}+\beta_{D}\left(\alpha_{U}+\beta_{U} E+\varepsilon_{U}\right)+\varepsilon_{D} \\
& =\alpha_{D}+\beta_{D} \alpha_{U}+\beta_{D} \beta_{U} E+\beta_{D} \varepsilon_{U}+\varepsilon_{D} \\
& =\alpha_{D}^{\prime}+\beta^{\prime}{ }_{D} E+\varepsilon_{D}^{\prime}, \tag{3}
\end{align*}
$$

where

$$
\begin{gather*}
\alpha_{\mathrm{D}}^{\prime}=\alpha_{\mathrm{D}}+\beta_{\mathrm{D}} \alpha_{\mathrm{U}}, \\
\beta_{\mathrm{D}}^{\prime}=\beta_{\mathrm{D}} \beta_{\mathrm{U}}, \\
\varepsilon_{\mathrm{D}}^{\prime}=\beta_{\mathrm{D}} \varepsilon_{\mathrm{U}}+\varepsilon_{\mathrm{D}} \\
\mathrm{D}=\alpha_{\mathrm{D}}+\beta_{\mathrm{D}}\left(-\frac{\alpha_{M}}{\beta_{M}}+\frac{1}{\beta_{M}} \mathrm{M}-\frac{\varepsilon_{M}}{\beta_{M}}\right)+\varepsilon_{\mathrm{D}} \\
=\alpha_{\mathrm{D}}+\beta_{\mathrm{D}}\left(-\frac{\alpha_{M}}{\beta_{M}}\right)+\frac{\beta_{D}}{\beta_{M}} \mathrm{M}-\frac{\beta_{\mathrm{D}}}{\beta_{M}} \varepsilon_{\mathrm{M}}+\varepsilon_{\mathrm{D}} \\
=\alpha_{\mathrm{D}}^{\prime \prime}+\beta_{{ }_{\mathrm{D}}}^{\prime} \mathrm{M}+\varepsilon^{\prime \prime}{ }_{\mathrm{D}}, \tag{4}
\end{gather*}
$$

where

$$
\begin{aligned}
& \alpha_{\mathrm{D}}^{\prime \prime}=\alpha_{\mathrm{D}}-\frac{\alpha_{M} \beta_{D}}{\beta_{M}}, \\
& \beta_{\mathrm{D}}^{\prime \prime}=\frac{\beta_{D}}{\beta_{M}}, \\
& \varepsilon_{\mathrm{D}}^{\prime \prime}=\varepsilon_{\mathrm{D}}-\frac{\beta_{D}}{\beta_{M}} \varepsilon_{\mathrm{M}} .
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
& \operatorname{cov}(\mathrm{D}, \mathrm{E})=\beta_{\mathrm{M}} \beta_{\mathrm{U}} \sigma_{\mathrm{E}} \sigma_{\mathrm{D}} \\
& \operatorname{cov}(\mathrm{D}, \mathrm{U})=\beta_{\mathrm{M}} \sigma_{U} \sigma_{\mathrm{D}} \\
& \operatorname{cov}(\mathrm{D}, \mathrm{M})=\frac{\beta_{M}}{\beta_{D}} \sigma_{\mathrm{M}} \sigma_{\mathrm{D}}
\end{aligned}
$$

Conditional covariance of E and D given M

$$
\begin{aligned}
\operatorname{cor}(\mathrm{E}, \mathrm{D}) & =\beta_{\mathrm{D}}^{\prime} \\
& =\beta_{\mathrm{D}} \beta_{\mathrm{U}} \\
\operatorname{cor}(\mathrm{E}, \mathrm{D} \mid \mathrm{M}) & =\frac{\operatorname{cov}(E, D \mid M)}{\sqrt{\operatorname{var}(\mathrm{E} \mid \mathrm{M}) \sqrt{\operatorname{var}(\mathrm{D} \mid M)}}} \\
\operatorname{cov}(\mathrm{E}, \mathrm{D} \mid \mathrm{M}) & =\mathrm{E}[\mathrm{ED} \mid \mathrm{M}]-\mathrm{E}[\mathrm{E} \mid \mathrm{M}] \mathrm{E}[\mathrm{D} \mid \mathrm{M}]
\end{aligned}
$$

According to section 1 and 2

$$
\begin{aligned}
& \mathrm{M}=\alpha_{\mathrm{M}}^{\prime}+\beta_{\mathrm{M}}^{\prime} \mathrm{E}+\varepsilon_{\mathrm{M}}^{\prime} \\
& \mathrm{E}=-\frac{\alpha_{M}^{\prime}}{\beta_{M}}+\frac{M}{\beta_{M}^{\prime}}+\frac{\varepsilon_{M}^{\prime}}{\beta_{M}^{\prime}} \\
& \mathrm{D}=\alpha_{\mathrm{D}}{ }_{\mathrm{D}}+\beta^{\prime \prime}{ }_{\mathrm{D}} \mathrm{M}+\varepsilon^{\prime \prime}{ }_{\mathrm{D}}, \\
& \mathrm{E}[\mathrm{E} \mid \mathrm{M}]=-\alpha_{M} \beta_{M}+\frac{1}{\beta_{M}^{\prime}} \mathrm{M} \\
& \mathrm{E}[\mathrm{D} \mid \mathrm{M}]=\alpha^{\prime \prime}{ }_{\mathrm{D}}+\beta^{\prime \prime}{ }_{\mathrm{D}} \mathrm{M} \\
& \mathrm{E}[\mathrm{ED} \mid \mathrm{M}]=\mathrm{E}\left[\left(-\frac{\alpha_{M}^{\prime}}{\beta_{M}}+\frac{M}{\beta_{M}^{\prime}}+\frac{\varepsilon_{M}^{\prime}}{\beta_{M}^{\prime}}\right)\left(\alpha_{\mathrm{D}}{ }_{\mathrm{D}}+\beta_{{ }_{\mathrm{D}}}^{\prime \prime} \mathrm{M}+\varepsilon^{\prime \prime}{ }_{\mathrm{D}}\right)[\mathrm{M}]\right.
\end{aligned}
$$

Since $E\left[\varepsilon_{M}^{\prime} \mid M\right]=0$ and $E\left[\varepsilon_{D}^{\prime \prime} \mid M\right]=0$,
$\left.E[E \mid M]^{*} E[D \mid M]=-\frac{\alpha_{M}^{\prime} \alpha_{D}^{\prime \prime}}{\beta_{M}}-\frac{\alpha_{M}^{\prime} \beta_{D}^{\prime \prime} M}{\beta_{M}}+\frac{M \alpha_{D}^{\prime \prime}}{\beta_{M}^{\prime}}+\frac{M^{2} \beta_{D}^{\prime \prime}}{\beta_{M}^{\prime}} \right\rvert\, M$, we have

$$
\mathrm{E}[\mathrm{ED} \mid \mathrm{M}]-\mathrm{E}[\mathrm{E} \mid \mathrm{M}] \mathrm{E}[\mathrm{D} \mid \mathrm{M}]=\mathrm{E}\left[\left.-\frac{\varepsilon_{M}^{\prime}}{\beta_{M}^{\prime}} \varepsilon^{\prime \prime} \mathrm{D} \right\rvert\, \mathrm{M}\right]
$$

$$
\begin{aligned}
& =\mathrm{E}\left[\left.\left(-\frac{\beta_{M} \varepsilon_{U}+\varepsilon_{M}}{\beta_{M} \beta_{U}}\right)\left(\varepsilon_{\mathrm{D}}-\frac{\beta_{M}}{\beta_{D}} \varepsilon_{\mathrm{M}}\right) \right\rvert\, \mathrm{M}\right] \\
& =\mathrm{E}\left[\left.\frac{\varepsilon_{\mathrm{M}}^{2}}{\beta_{D} \beta_{U}} \right\rvert\, \mathrm{M}\right] \\
& =\frac{\sigma_{M}^{2}}{\beta_{D} \beta_{U}} \\
\operatorname{var}(\mathrm{E} \mid \mathrm{M}) & =\frac{1}{\left(\beta_{M}^{\prime}\right)^{2}} \operatorname{var}\left(\varepsilon_{\mathrm{M}}^{\prime}\right) \\
& =\frac{\beta_{M}^{2} \sigma_{U}^{2}+\sigma_{M}^{2}}{\beta_{M}^{2} \beta_{U}^{2}} \\
\operatorname{var}(\mathrm{D} \mid \mathrm{M}) & =\operatorname{var}^{\prime 2}\left(\varepsilon_{D}^{\prime \prime}\right) \\
& =\epsilon_{\mathrm{D}}^{2}+\frac{\beta_{D}^{2}}{\beta_{M}^{2}} \sigma_{M}^{2}
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\operatorname{bias}=\operatorname{cor}(\mathrm{E}, \mathrm{D} \mid \mathrm{M})-\operatorname{cor}(\mathrm{E}, \mathrm{D})=\frac{\frac{\sigma_{M}^{2}}{\beta_{u} \beta_{D}}}{\sqrt{\frac{\beta_{M}^{2} \sigma_{U}^{2}+\sigma_{M}^{2}}{\beta_{M}^{2} \beta_{U}^{2}}} \sqrt{\sigma_{D}^{2}+\frac{\alpha_{M}^{2} \beta_{D}^{2}}{\beta_{M}^{2}} \sigma_{M}^{2}}}-\beta_{\mathrm{D}} \beta_{\mathrm{U}} \tag{5}
\end{equation*}
$$

The second model

Let $\mathrm{E}, \mathrm{U}, \mathrm{M}$ and D be four random variables with.

Suppose the linear models among them are:

$$
\begin{aligned}
& \mathrm{U}=\alpha_{\mathrm{U}}+\beta_{\mathrm{UE}} \mathrm{E}+\beta_{\mathrm{UM}} \mathrm{M}+\varepsilon_{\mathrm{U}}, \\
& \mathrm{D}=\alpha_{\mathrm{D}}+\beta_{\mathrm{D}} \mathrm{U}+\varepsilon_{\mathrm{D}}
\end{aligned}
$$

Assume we have $\mathrm{E} \sim \mathrm{N}\left(\mu_{\mathrm{E}}, \sigma_{E}^{2}\right), \mathrm{M} \sim \mathrm{N}\left(\mu_{\mathrm{M}}, \sigma_{M}^{2}\right), \varepsilon_{\mathrm{U}} \sim \mathrm{N}\left(0, \sigma_{U}^{2}\right), \varepsilon_{\mathrm{M}} \sim \mathrm{N}\left(0, \sigma_{M}^{2}\right)$ and $\varepsilon_{\mathrm{D}} \sim \mathrm{N}$ $\left(0, \sigma_{D}^{2}\right)$, where $\mu_{\mathrm{E}}, \sigma_{E}^{2}, \mu_{\mathrm{M}}, \sigma_{M}^{2}, \sigma_{U}^{2}$, and σ_{D}^{2} are known.

$$
\begin{aligned}
& \mu_{\mathrm{U}}=\alpha_{\mathrm{U}}+\beta_{\mathrm{UE}} \mu_{\mathrm{E}}+\beta_{\mathrm{UM}} \mu_{\mathrm{M}}, \\
& \mu_{\mathrm{D}}=\alpha_{\mathrm{D}}+\beta_{\mathrm{D}} \mu_{\mathrm{U}} \\
& \operatorname{Var}(\mathrm{U})=\beta^{2}{ }_{\mathrm{UE}} \sigma_{\mathrm{E}}^{2}+\beta_{\mathrm{UM}}^{2} \sigma_{\mathrm{M}}^{2}+\sigma_{U}^{2}, \\
& \operatorname{Var}(\mathrm{D})=\beta^{2}{ }_{\mathrm{D}} \sigma_{\mathrm{U}}^{2}+\sigma_{D}^{2} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\mathrm{D} & =\alpha_{\mathrm{D}}+\beta_{\mathrm{D}}\left(\alpha_{\mathrm{U}}+\beta_{\mathrm{UE}} \mathrm{E}+\beta_{\mathrm{UM}} \mathrm{M}+\varepsilon_{\mathrm{U}}\right) \\
& =\alpha_{\mathrm{D}}^{\prime}+\beta_{\mathrm{DE}}^{\prime} \mathrm{E}+\beta_{\mathrm{DM}}^{\prime} \mathrm{M}+\varepsilon_{\mathrm{D}}^{\prime},
\end{aligned}
$$

where

$$
\begin{aligned}
& \alpha_{\mathrm{D}}^{\prime}=\alpha_{\mathrm{D}}+\beta_{\mathrm{D}} \alpha_{\mathrm{U}}, \\
& \beta_{\mathrm{DE}}^{\prime}=\beta_{\mathrm{D}} \beta_{\mathrm{UE}}, \\
& \beta_{\mathrm{DM}}^{\prime}=\beta_{\mathrm{D}} \beta_{\mathrm{UM}}, \\
& \varepsilon_{\mathrm{D}}^{\prime}=\beta_{\mathrm{D}} \varepsilon_{\mathrm{U}}+\varepsilon_{\mathrm{D}} .
\end{aligned}
$$

The third model

Let E, U, M and D be four random variables with

Suppose the linear models among them are:

$$
\begin{aligned}
& \mathrm{U}=\alpha_{\mathrm{U}}+\beta_{\mathrm{UE}} \mathrm{E}+\beta_{\mathrm{UM}} \mathrm{M}+\varepsilon_{\mathrm{U}}, \\
& \mathrm{D}=\alpha_{\mathrm{D}}+\beta_{\mathrm{DE}} \mathrm{E}+\beta_{\mathrm{DU}} \mathrm{U}+\varepsilon_{\mathrm{D}} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\mathrm{D} & =\alpha_{\mathrm{D}}+\beta_{\mathrm{DU}}\left(\alpha_{\mathrm{U}}+\beta_{\mathrm{UE}} \mathrm{E}+\beta_{\mathrm{UM}} \mathrm{M}+\mathrm{E}_{\mathrm{U}}\right)+\beta_{\mathrm{DE}} \mathrm{E}+\varepsilon_{\mathrm{D}} \\
& =\alpha_{\mathrm{D}}+\beta_{\mathrm{DU}} \alpha_{\mathrm{U}}+\left(\beta_{\mathrm{DE}}+\beta_{\mathrm{UE}} \beta_{\mathrm{DU}}\right) \mathrm{E}+\beta_{\mathrm{UM}} \beta_{\mathrm{DU}} \mathrm{M}+\beta_{\mathrm{DU}} \varepsilon_{\mathrm{U}}+\varepsilon_{\mathrm{D}} \\
& =\alpha_{\mathrm{D}}^{\prime}+\beta_{\mathrm{DE}}^{\prime} \mathrm{E}+\beta_{\mathrm{DM}}^{\prime} \mathrm{M}+\varepsilon_{\mathrm{D}}^{\prime},
\end{aligned}
$$

where

$$
\begin{aligned}
& \alpha_{\mathrm{D}}^{\prime}=\alpha_{\mathrm{D}}+\beta_{\mathrm{D}} \alpha_{\mathrm{U}}, \\
& \beta_{\mathrm{DE}}^{\prime}=\beta_{\mathrm{DE}}+\beta_{\mathrm{UE}} \beta_{\mathrm{DU}}, \\
& \beta_{\mathrm{DM}}^{\prime}=\beta_{\mathrm{UM}} \beta_{\mathrm{DU}}, \\
& \varepsilon_{\mathrm{D}}^{\prime}=\beta_{\mathrm{DM}} \varepsilon_{\mathrm{U}}+\varepsilon_{\mathrm{D}} .
\end{aligned}
$$

