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1 Introduction

For the interested reader we supply more information about wavelet analysis
related to our article in anesthesiology. The amount of literature has increased
throughout the past 10 years, therefore we apologize for maybe missing out
some important articles. Nevertheless we hope that the reader not interested
in mathematical formula will still profit by reading the text. Help and new
development around wavelet transform can be gathered at Wim Swelden’s
Wavelet Digest (http://www.wavelet.org/). For a more thorough explanation
we refer the reader to the following reviews and articles 1−19.

2 Wavelet transform: basics and explanations

2.1 Overview

Wavelets are a special class of functions which are often used for the analysis
of time series and signals. Like with Fourier analysis, which represents a time
series as a linear combination of complex exponential functions

x(t) =

+∞∫

−∞
X(ω)ei2πωtdω, (1)

the basic idea of the wavelet analysis is to represent a time series as a linear
combination of wavelets (small locally restricted wave packets). In the Fourier
analysis each basis function is associated to a certain frequency f . The abso-
lut values of the resulting coefficients allow the deduction which frequencies
contribute to what extend to the signal

X(ω) =

+∞∫

−∞
x(t)e−i2πωtdt. (2)

Here X(ω) names complex coefficients which show that relative contribution
of the frequencies ω. Equation (2) is the same as the inner product of the
signal x(t) with the complex exponential function e−i2πωt and describes the
continuous Fourier transform of the signal x(t). X(ω) does not provide time
information. Therefore, with Fourier analysis we can only basically analyse
which frequencies are contained in a signal and to what extent, but not where
in the signal.
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Opposed to that, the wavelet analysis works with wavelets that are associated
with two independent variables, the variable s and the scale τ . In general,
each wavelet is equal to zero exept on the intervall [s− τ, s+ τ ]. Within this
intervall, the mean of the wavelet is zero, the wavelet is centered around s
with the length 2τ .

By representing a time series as a linear combination of wavelets, it is possible
to show the time evolution of the signals on different scales. We will show this
in the following for the continuous and the discrete wavelet transform.

2.2 The continuous wavelet transform

Mathematically strictly formulated a function Ψ(t) is called a wavelet, if it
follows the following conditions:

(1)
∫ +∞
−∞ Ψ(t)dt = 0 (mean is zero),

(2)
∫ +∞
−∞ Ψ2(t)dt = 1 (size is normed to 1).

The properties of such a wavelet in the time-frequency space are described as
follows:

t0 =

+∞∫

−∞
t|Ψ(t)|2dt ; ω0 = 2π

+∞∫

−∞
ω|Ψ̂(ω)|2dω

D =

√√√√√
+∞∫

−∞
(t− t0)

2|Ψ(t)|2dt

B =

√√√√√4π2

+∞∫

−∞
(ω − ω0)

2|Ψ̂(ω)|2dω

µ = D2B2

with
+∞∫

−∞
|Ψ(t)|2dt = 1 and Ψ̂(ω) =

+∞∫

−∞
Ψ(t)·e−iωtdt.

The wavelet Ψ is localized around (t0, ω0) with the uncertainty µ with the
duration D and the bandwidth B. A sharp resolution in the time space and
the frequency space together is impossible because of the uncertainty principle
20.

The wavelet transform makes use of translations and dilations of the function
Ψ ∈ L2(R). In the case of the continuous wavelet transform the translations
and dilations vary continuously. The transform therefore uses functions of the
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following kind:

Ψτ ;s(t) =
1√
|τ |

Ψ(
t− s

τ
) with τ, s ∈ R, τ 6= 0. (3)

These functions are normed which means that the L2(R) are independent of
a. The continuous wavelet transform of a function f ∈ L2(R) is defined as
follows

W (τ, s) = 〈f,Ψτ,s〉 . (4)

Mathematically this can be formulated as (Parsevals’s identity)

2πW (τ, s) = 〈f̂ , Ψ̂τ,s〉 (5)

with

Ψ̂τ,s(ω) =
τ√
|τ |
e−iωsΨ̂(τω). (6)

If the wavelet ψ follows the condition

Cψ =

+∞∫

−∞

|ψ̂(ω)|2
ω

dω <∞, (7)

then the continuous wavelet transform is invertible CWT (τ, s) in its defined
space and the inverse transform is

f(t) =
1

Cψ

+∞∫

−∞

+∞∫

−∞
CWT (τ, s)ψτ ;s(t)

dτds

τ 2
. (8)

A very important relation is described as follows:

+∞∫

−∞
f 2(t)dt =

1

CΨ

+∞∫

−∞

∫

−∞

+∞
[W (τ, s)]2ds

dτ

τ 2
. (9)

The left side of equation 9 is called the ”energy”, of the signal x(t), in fact it
is only an energy in the physical sense when the dimension of x(t) is equivalent.
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[W (τ, t)]2/τ 2 can be regarded as an energy density function which decon-
volutes the energy of x(t) on several time points and scales.

We show an example of the continuous wavelet transform. Figure 1 shows
two wavelets. The wavelet on the left side is the Haar Wavelet, which was
published as first wavelet in the year 1910 in an article of Haar 21.
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Fig. 1. Two examples of wavelets, on the left side the Haar wavelet, on the right
side the Mexican Hat wavelet.

The definition of the Haar wavelet is somehow trivial:

Ψ(Haar)(t) =





−1/
√

2, n− 1 < t < 0

1/
√

2, 0 < t < 1

0, otherwise.

The second wavelet Ψ(Mexhat)(t) is proportional to the second derivative of
the Gauss’ probability function, the naming is derived from the shape of the
wavelet.

The continuous wavelet transform of the signal with the Haar wavelet is de-
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fined as follows:

W (Haar)(τ, t) =

+∞∫

−∞
Ψ(Haar)
τ,s (t)f(t)dt,





with 0 < τ <∞
and −∞ < s < +∞.

Conceptionally Ψ(Haar)
τ,s (t) arises from Ψ(Haar)(t) by dilation in such a way

that the area different from zero extends to the intervall [−τ, τ ] followed by a
translation so that the function is centered around the time point s. The value,
associated with (τ, s) can be interpreted as difference between neighbouring
means which are set before and after the time point s on the scale τ .

0  25 50 75 100

10

20

30

40

50

60

time in [ms]

sc
al

es

Ca,b Coefficients − Continuous wavelet transform

25 50 75 100
−0.6

−0.4

−0.2

0

0.2

Analysed Signal  (length = 512)

time in [ms]

po
te

nt
ia

l i
n 

[µ
V

]

Ca,b Coefficients−Continuous wavelet transform     

Fig. 2. Continuous wavelet transform of an auditory evoked potential sampled at
5120 Hz with the Daubechies 4 Wavelet on 64 scales.

This description is valid for basically all wavelets. The physical interpretation
for the wavelets of a ”rounder” shape like the Mexican Hat wavelet, as we
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presented in Figure 1 results from a comparison of the two wavelets shown in
Figure 1: the Haar wavelet calculates simple means of a signal before and after
the time point t = 0, the Mexican Hat wavelet calculates a weighted mean on
an intervall centered around t = 0 and weighted means before and after this
intervall.

In practice it is of special interest to perform transforms that do not use
the complete values of the intervall τ and s for the continuous wavelet trans-
form CWT (τ, s). The frame theory allows to use only discrete values for τ and
s22. The most common choice is a dyadic grid, i.e. τ = 2−j and s/τ = l with
j, l ∈ Z 23,24. This leads to the discrete wavelet transform and their use as a
multi resolution analysis. In general we can say that the less values are used
for τ and s the more restrictive are the conditions the wavelet has to fulfill.
The continuous wavelet transform allows the usage of basically any wavelet.
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2.3 The discrete wavelet transform

For many signals the continuous wavelet transform is a highly redundant pro-
cedure for both time information and scale information. There will be just a
small difference between W (τ, s) and W (τ ′, s), if |τ − τ ′| is small compared
to τ or between W (τ, s) and W (τ, s′), if |s − s′| is small compared to s. The
discrete wavelet transform folds a digital filter with the signal to analyse. The
choice of the discrete steps for the translations in time and the dilations to
scales τ is principally the choice of the investigator. Nevertheless the complete
representation of the signal on different scales without redundancy is only pos-
sible for special classes of discrete wavelet transforms. These special classes
define an orthogonal deconvololution of the signal on subspaces (which are
related to the scales). This leads to the concept of a multi resolution analysis.
In the following, we will describe the wavelet transform for the special case
that a dyadic grid is chosen for the steps of translation and dilation.

The discrete orthogonal wavelet transform is defined via a wavelet filter and
an associated filter, the so called scaling filter. Formally, a wavelet filter h1,l

is a sequence of numbers with their sum adding up to zero, the sum of their
squares being normable and being orthogonal to translations by the factor of
2:

∞∑

l=−∞
h1,l = 0

and

∞∑

l=−∞
h1,lh1,l+2n =





1 if n = 0

0 otherwise

The simplest wavelet filters have a finite length L, such that there exists an
L with h1,l = 0 for l < 0 and l≥L, while h1,0 6= 0 and h1,L−1 6= 0. The Haar
wavelet is the simplest wavelet filter:

h
(Haar)
1,l =





−1/
√

2, for l = 0

1/
√

2, for l = 1

0, otherwise

The discrete wavelet transform to a scale is defined as follows

W̃1,t =
1√
2

L−1∑

t=0

h1,lXt−lmodN and
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Ṽ1,t =
1√
2

L−1∑

t=0

g1,lXt−lmodN t = 0, . . . , N − 1.

”t − l mod N” is equivalent to ”t − l modulo N” and is defined, that if
0 ≤ m ≤ N − 1 then m mod N = m, otherwise m mod N = m+ nN .

The discrete wavelet transform is defined for more than one scale. The practi-
cal implementation works by ”stretching” the wavelet and the scaling filter in
such a way, that their effective length doubles from scale to scale. The length
of the filter on scale j then results in Lj = ((2j − 1)(L− 1) + 1).

Today only the filters h1,l und g1,l are used to form a pyramidal algorithm.
By definition the scaling coefficients on the scale 0 are equal to the signal
V0,t = Xt. Once the scaling coefficients Vj−1,t on the scale j−1 are known, the
filtering of that scale with the filters h1,l und g1,l results in the wavelet and
scaling coefficients of scale j

Wj,t =
L−1∑

l=0

h1,lVj−1,2t+1−lmodNj−1
and

Vj,t =
L−1∑

l=0

g1,lVj−1,2t+1−lmodNj−1
for t = 0, . . . , Nj − 1.

This algorithm allows the wavelet transform to be calculated with O(N)
operations. In comparison the algorithm of the fast fourier transform yields
O(Nlog2(N)) operations.

Since the discrete wavelet transform describes the deconvolution of a signal on
to orthogonal subspaces, the scale J of the discrete wavelet transform can be
rewritten as an orthogonal transform of the vector X = [X0, X1, . . . , XN−1]

′.
If Wj = [Wj,0,Wj,1, . . . ,WNj−1,0]

′ and V = [VJ,0, VJ,1, . . . , VNJ−1,0]
′ name the

corresponding subspaces, then W = WX results in the matrix containing the
coefficients of the discrete wavelet transform:

W =




W1

W2

...

WJ

VJ




. (10)

Here W is a N ×N matrix, whose rows depend only on the wavelet filter h1,l.
The properties of the wavelet filter imply, that W is an orthonormal matrix
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with W ′ W = IN , where IN is the N ×N unitary matrix.

The orthogonality yields two important consequences. First, an orthogonal
transform conserves physical properties like the ”energy” of X in the sense
that ||W||2 = ||X||2, where ||X||2 =

∑N−1
t=0 X2

t is the squared norm of the
vector X. If we split W according to equation 10

||X||2 =
J∑

j=1

||Wj||2 + ||VJ ||2. (11)

then equation 11 corresponds to the representation of an energy density on
different scales. ||Wj||2 corresponds to the contribution of energy that results
from changes on the scale τj.

Second, the inverse matrix of the matrix containing the coefficients of the
discrete wavelet transform W results in the transposed matrix W ′. Thus the
signal X can be completely reconstructed via the wavelet coefficients of the
discrete wavelet transform X = W ′ W. X and W are therefore equivalent
and are both descriptions of the same mathematical identity.

Similar to the deconvolution of W into the vectors Wj and VJ the matrix W
can be deconvoluted in

W =




W1

W2

...

WJ

VJ




.

Here Wj denotes a Nj × N matrix, with the rows being constructed by the
filter h1,l. VJ is a NJ × N matrix calculated via the filter gJ,l. The signal X
can therefore be described as:

X = W ′ W =
J∑

j=1

W ′
j Wj + V ′

J VJ =
J∑

j=1

Dj + SJ . (12)

Dj = Wj
′Wj is a N -dimensional vector, called the jth detail scale, SJ = VJ

′VJ

describes the approximations of the signal on the scale J .

10



V3

W4V4

W2V2

W3

h1,lg1,l

p
2

p
2

h1,lg1,l

p
2

p
2

W1V1

h1,lg1,l

p
2

p
2

h1,lg1,l

p
2

p
2

Xt

Fig. 3. The successive filtering with the wavelet and the scaling filter, shown as a
pyramidal filter bank for a multi resolution analysis down to scale 4.

The described additive deconvolution of the signal X in detail functions Dj

and one approximation function SJ is known as multi resolution analysis.
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3 Interindividual replicability

We show the digitally filtered traces of the 19 patients included in our study.
The filtering was performed via waveletfiltering and reconstruction as dis-
cussed on the previous pages with the wavelet Daubechies 4.
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Fig. 4. Digitally filtered traces of the AEPs of 19 patients included in our study.
Filtering and reconstruction was performed with the Daubechies 4 wavelet.

12



References

[1] Beylkin G, Coifman R, Daubechies I, Mallat S, Meyer Y, Raphael L Ruskai
MB: Wavelets. Boston, Jones & Bartlett, 1991

[2] Chui CK: An overview of wavelets. In Approximation theory and functional
analysis, pages 47–71. Academic Press, Inc., 1991

[3] Chui CK: An Introduction to Wavelets, Volume 1 of Wavelet Analysis and its
Applications. San Diego, Academic Press Inc., 1992

[4] Chui CK: Wavelets: A Tutorial in Theory and Applications, Volume 2 of
Wavelet Analysis and its Applications. San Diego, Academic Press Inc., 1992

[5] Chui CK: Wavelets: A Mathematical Tool for Signal Analysis. SIAM
Monographs on Mathematical Modeling and Computation. Philadelphia,
Society for Industrial and Applied Mathematics, 1997

[6] Cohen A, Daubechies I, Feauveau JC: Bi-orthogonal bases of compactly
supported wavelets. Comm. Pure Applied Math, 1992; 45: 485–560

[7] Cohen A, Daubechies I, Vial P: Multiresolution analysis, wavelets and fast
algorithms on an interval. Appl. Comput. Harmon. Anal. 1993; 1: 54–81

[8] Cohen A, Ryan RD: Wavelets and Multiscale Signal Processing. London,
Chapman & Hall, 1995

[9] Coifman RR, Meyer Y, Wickerhauser V: Wavelet analysis and signal processing
in Wavelets and Their Applications. Edited by Ruskai MB, Beylkin G, Coifman
R, Daubechies I, Mallat S, Meyer Y, Raphael L. Boston, Jones & Bartlett, 1992,
pp 453–470

[10] Daubechies I: Ten Lectures on Wavelets, Volume 61 of CBMS-NSF Regional
Conference Series in Applied Mathematics. Philadelphia, SIAM, 1992

[11] Grossmann A, Kronland-Martinet A, Morlet J: Reading and understanding
continuous wavelet transforms in Wavelets: Time-Frequency Methods and
Phase Space. Edited by Combes JM, Grossmann A, Tchamitchian P.
Heidelberg, Springer, 1989, pp 2–20

[12] Grossmann A, Morlet J: Decompostion of Hardy functions into square
integrable wavelets of constant shape. SIAM J. Math. Anal. 1984; 15: 723–
736

[13] Grossmann A, Morlet J: Decomposition of functions into wavelets of constant
shape and related transforms in Mathematics and physics, Lectures on Recent
Results. Edited by Streit L, Signapore, World Scientific, 1985

[14] Jawerth B, Sweldens W: An overview of wavelet based multiresolution analyses.
SIAM Rev. 1994; 36: 377–412

[15] Louis AK, Maaß P, Rieder A: Wavelets: Theory and Applications. Chichester,
England, John Wiley & Sons, 1997

13



[16] Rioul O, Vetterli M: Wavelets and signal processing. IEEE Signal Proc. Mag.
1991; 8: 14–38

[17] Samar VJ, Bopardikar A, Raghuveer R, Swartz K: Wavelet analysis of
neuroelectric waveforms: A conceptual tutorial. Brain and Language 1999; 66:
7–60

[18] Schiff SJ, Aldroubi A, Unser M, Sato S: Fast wavelet transformation of EEG.
Electr. Clin. Neurophysiol. 1994; 91: 442–455

[19] Strang G, Nguyen T: Wavelets and Filter Banks. Wellesley MA, Wellesley-
Cambridge Press, 1996

[20] Jackson JD: Klassische Elektrodynamik. Berlin, New York, de Gruyter, 1982

[21] Haar A. Zur Theorie der orthogonalen Funktionen-Systeme. Math. Ann. 1910;
69: 331–371

[22] Heil CE, Walnut DF: Continuous and discrete wavelet transforms. SIAM
Review 1989; 31: 628–666

[23] Daubechies I: The wavelet transform, time-frequency localization and signal
analysis. IEEE Trans. Inform. Theory 1990; 36: 961–1005

[24] Frazier M, Jawerth B: A discrete transform and decompositions of distribution
spaces. J. Func. Anal. 1990; 93: 34–170

14


