
 Page 1

Supplemental Digital Content 2

Retrieval of Denominator Neuromuscular Blocking Agent Data

Version 1.13

1. Synopsis

The following databases were interrogated:

1. The SAFERsleep

 database at Auckland District Health Board (ADHB);

2. The SAFERsleep database at Waitemata District Health Board (WDHB);

3. The patient administration database “Content Management System (CMS) database” at

ADHB;

4. A simple, customised database ('unity'), used to amalgamate and query the data obtained

from the two SAFERsleep databases. This database, created using the MySQL relational

database management system (Oracle Corporation, Redwood City, CA), is described in

detail below.

Methodology is described in Section 2. After reconciliation of minor National Health Index (NHI)

numbers, data were sanitised (Section 3) and then queried to determine:

1. Number of patients who received various neuromuscular blocking agents (NMBAs);

2. Number of anesthetics in which various NMBAs were used;

3. Total usage of the various NMBAs;

4. Repeat doses of NMBAs within one anesthetic;

5. Use of NMBA infusions;

6. Scanning versus manual entry of drug identities.

The data thus obtained are summarised and discussed in the accompanying paper, and are presented

in detail below in Section 4. Section 5 contains listings of the more complex SQL code.

Potential risks for data analysis are the need to exclude “test” data present within the databases,

missing data, inconsistencies within the data, and variable/varied use of codes. It is reassuring that

just a small percentage of records suffered from these issues (0.2% of NHIs were defective; 0.86%

of entries were excluded; 0.3% of entries refer to a ‘generic’ NMBA, and 0.5% of entries were

altered), as explored in depth in Sections 3 and 4 of this document. The fact that New Zealand

National Health Index (NHI) numbers have a built in checksum
†
 was invaluable in excluding

defective records.

The single most important part of this analysis is the table on page 10, as it lists the number of

patients from the two District Health Boards (DHBs) as identified by their NHIs, who were exposed

to the various neuromuscular blocking agents used during the interval examined. These data

provide the denominator for our calculation of rates of occurrence of anaphylaxis to NMBAs.

Section 6 explains how anyone with access to a MySQL database can use the full, anonymized data

set provided with this paper to duplicate almost all of the queries used in this document (Queries

labelled -- [1]–[24] in the text).


 The SAFERsleep anesthetic safety system captures anesthesia-related data and details of intra-operative management

of patients.
†
 Described at: http://www.health.govt.nz/system/files/documents/pages/nhi_validation_routine_0.doc Last accessed 21

August 2014.

http://www.health.govt.nz/system/files/documents/pages/nhi_validation_routine_0.doc

 Page 2

2. Methodology

2.1 Initial queries:

At ADHB, data for SAFERsleep version 6.0.5 are stored in Microsoft SQL server Enterprise

Edition (V9.00.4035.00). This database was interrogated using Microsoft SQL Server 2008 R2

Management Studio (V10.50.1600.1)
‡
. Listing 1 in Section 5 shows the query used.

The principal objective of the code in Listing 1 is to identify all drug records where the class of

drug is an NMBA (Cla.Description LIKE 'Muscle%') and the record creation time is between

'2006-01-01 00:00:00' and '2012-12-31 23:59:59'. The test to identify NMBAs has been

checked and found to be necessary and sufficient in this database. Further, minor details of

operation of the listed code accompany the listing.

A similar query was used to interrogate the database at WDHB; due to the different SAFERsleep

version, two extra fields were retrieved from the DrAdm table (DrugPresentationId and

IsGeneric). These two fields are populated with '0' values in the ADHB data (as is clear from

Listing 1) and were not used in any analyses. Retrieved data were stored as comma-delimited

(CSV) files.

The following files were created and used for data importation:

1) From WDHB
§
:

a) WDHB_data.csv — WDHB data up to June 30, 2012;

b) WDHB_late2012.csv — WDHB data for the remainder of 2012.
¶

2) From ADHB: ADHB_data_all.csv — data for the period January 1, 2006, until December 31,

2012.

In order to amalgamate the data for simple analysis, a flat-file database was created using MySQL,

(Final version used for these analyses 5.5.31 running Apache/2/2/22) using the SQL code shown in

Listing 2 (Section 5). Data were then imported from the CSV files created above. The MySQL

console statements used to perform this task are shown in Listing 3. The insertion statements differ

for the two databases, because data retrieved at WDHB were provided to the author with New

Zealand date formatting. All MySQL queries were checked on two operating systems (Windows XP

SP3 (Microsoft Corporation, Redmond, WA); Ubuntu Linux 12.10, (Canonical, London, United

Kingdom)).

There were several initial, minor errors on importation. A backslash included in a surname (line 144

of the main WDHB CSV data, and lines 51 and 52 of the ancillary data) causes a frame misread.

These problems were corrected by manual editing of the files. Added blank characters terminating

the NHIs in the WDHB data required removal. Two birth dates contained overt typographical errors

and were treated as invalid. Similarly, with the ADHB data, backslash characters were altered in the

comma-delimited (CSV) data at physical lines 388, 619–625, 693, 1,524–1,527, 2,083, 2,281,

3,047–3,048, 3,248–3,252, 3,272, 3,273, 3,915, 67,075, 147,418–147,419, and 160,142–160,144.

Ectopic quote characters were removed at lines 14,642–14,643 and 123,777.

‡
 With Microsoft Data Access Components 3.85.1132.

§
 Thanks to Richard Roger for providing the WDHB data, and running the appropriate query

¶
 Availability of data for the whole of 2012 (not initially present as the project was conceived in mid-2012) motivated

completion of the record for this year.

 Page 3

2.2 Reconciliation of Minor NHIs:

On admission to hospital, if a patient is not identified as already having an NHI (for example, if the

patient is unable to communicate, incorrect details are provided, or an administrative error has been

made) then a duplicate NHI will be created within the national NHI database. Subsequently, most of

these NHIs will be reconciled on a national basis with existing (primary) NHIs, and the second NHI

will be linked to the primary record and designated a “minor” NHI.

 At ADHB the local patient administration database (CMS database) contains current information

about major and minor NHIs, and details of the association. The query used to reconcile minor

NHIs present in the SAFERsleep database with primary NHIs in CMS is shown in Listing 4. This

query identified 788 minor NHIs for the 66,012 valid NHIs at ADHB (1.2%). These associations

were imported into a table created using the code in Listing 4, and then reconciled using the

remaining code in that listing.

Note that there was no direct reconciliation of minor NHIs at WDHB as the author does not have

access to their patient management system (which differs from that at ADHB) or direct access to the

national NHI system. A query of all NHIs from the WDHB SAFERsleep database against the CMS

database at ADHB however showed that of the 28,412 distinct NHIs, 22,680 matched major NHIs

visible at ADHB; there were just 21 minor NHIs among all of those from WDHB.
**

 This query may

have missed patients who have no representation in the ADHB CMS database, permitting a worst-

case number of minor NHIs in the WDHB data of 28,412-22,680= 5,732 entries (20.2% of these

NHIs, or ~6.2% of all NHIs) however the ADHB data suggest a rate of approximately 1.2%.

It should be noted that the presence of a minor NHI will only be relevant where the major NHI is

also present in the same data set, i.e., there are two entries for the same patient. As noted,

examination of the ADHB data set revealed 788 minor NHIs but, if prior to updating the minor

NHIs, we say:

select count(1) from FLAT inner join minority on FLAT.NHI = minority.major

... we obtain just 298 such entries that relate to 97 distinct NHIs. If we confine our attentions to

ADHB (i.e., AND DHB=1), then the numbers drop to 275 and 88. In other words, without correction

for minor NHIs, we determine that for the ADHB data set, the number of NHIs in the denominator

was inflated by just 88/(66,260-88), that is 0.13%.

**

 The query was crude, as follows:
 SELECT count(distinct a1.sAliasIdCode) as MajorCount

 FROM prodPatient.dbo.Alias a1

 WHERE a1.lAliasTypeId = 1 -- Primary NHI

 AND a1.sAliasIdCode IN (-- vast list of quoted NHIs here

);

 In creating the list of NHIs for insertion in the above, you will also need to replace double quotes with single ones. Under Windows

try, e.g. perl -p -i.bak -e "s/\"/'/mg" WDHB_NHIs.csv ; To create a new csv with carriage returns replaced by

commas, say, e.g. perl -p -e "s/\n/,/mg" single.csv > wnhi.csv

 Page 4

3. Data examination & sanitisation

In addition to the amendments already described at data importation, the following approach was

used to 'sanitise' the data:

1. The bad_nhi and suspect_data fields were used to identify defective/suspect data;

2. Records in the database were examined in detail if:

2.1. The date of birth was defective or missing;

2.2. Gender was absent;

2.3. Surnames were missing;

2.4. Timestamps were defective or appeared inappropriate;

2.5. Entries were documented as “not administered”.

The results of this investigation are as follows.

3.1 Data characteristics

3.1.1 Number of records

SELECT count(1) FROM `FLAT` WHERE 1; -- [1]

There are 237,469 records. The patient count (based on distinct NHIs) is 93,109; the anesthetic

count 87,564 for ADHB and 34,440 for WDHB.

SELECT count(DISTINCT NHI) FROM `FLAT` WHERE 1; -- [2]

SELECT

 DHB

 ,count(DISTINCT AnaestheticId)

 FROM `FLAT`

GROUP BY DHB; -- [3]

Table 1. Gender

3.1.2 Gender distribution

SELECT

 Sex

 ,DHB

 ,count(distinct NHI) as Number

FROM FLAT

GROUP BY

 DHB

 ,Sex

ORDER BY DHB, Sex;
The results of this query are shown in table 1. Values where the sex is reported as “NULL” are

further examined under below.

3.2 Defective NHIs

Sex DHB Number

NULL 0 32

F 0 17,159

M 0 11,222

NULL 1 160

F 1 33,180

M 1 32,833

 Page 5

There are 449 records (0.2%) with NHIs flagged as defective (the checksum is invalid), reflecting

191 distinct NHIs (0.2%).

SELECT *

FROM FLAT

WHERE bad_nhi = 1

ORDER BY NHI; -- [4]

Visual inspection of these records reveals that some are test data from WDHB (notably 70 with the

NHI commencing with “ZZZ”), others appear to represent mis-keying of the NHI (Earlier versions

of SAFERsleep did not validate the NHI using the checksum). In any case, relative to the total

number of patients, anesthetics and drug administrations, this number is small, and these records

have subsequently been excluded.

3.3 'Suspect' data

The suspect_data field identifies records where the automated checks described in the

documentation for Listing 1 suggest a problem. As the criteria were broad and fairly non-specific,

the number of records here is predictably larger at 5,267 (1.9%), with 1,868 distinct NHIs (2.0%),

and 737 and 2,014 distinct anesthetics at WDHB and ADHB respectively.

SELECT count(1)

FROM FLAT

WHERE suspect_data = 1

ORDER BY NHI; -- [5]

SELECT count(distinct NHI)

FROM FLAT

WHERE suspect_data = 1; -- [6]

SELECT

 DHB

 ,count(distinct Anaestheticid)

FROM FLAT

WHERE suspect_data = 1

GROUP BY DHB; -- [7]

The following queries all exclude records where the NHI is incorrect. This Leaves 4,978 records

labelled “suspect”.

SELECT count(1)

FROM FLAT

WHERE suspect_data = 1

AND bad_nhi <> 1; -- [8]

 Page 6

Of these, 438 have null gender; 1,357 have a null date of birth; 104 have a null surname;
††

 the

remainder we selected on more 'fuzzy' criteria noted above. Most of these data appear otherwise

normal on visual inspection, unless known test NHIs are used (e.g., those with a leading `Z',

HUX8660, and PRP1660).

Based on the preceding analysis, it seems reasonable to:

1. Exclude all records with defective NHIs. The number is small, and these records are often

defective;

2. Also exclude all records associated with known “test” NHIs. These are listed below;

3. Retain all other records for further analysis.

An initial strategy to identify defective records with apparently valid NHIs is:

SELECT DHB, NHI, Firstname, LastName, OperationDescription

FROM FLAT

WHERE bad_nhi <> 1

AND

 (NHI IN ('HUX8660', 'PRP1660', 'SMF4820', 'HTL5755', 'PRG4091',

 'RBX1098', 'SBE2699', 'JBX3656', 'JBX3648', 'QNE2039', 'RMQ4825',

 'RLT4436', 'QES3450', 'PFA2279', 'LYJ6754')

 OR NHI LIKE 'Z%')

ORDER BY NHI;

This identifies 115 records; together with the defective NHIs, we exclude a total of 564 rows. We

are left with 236,905 rows, retaining 99.76% of all records. However, most of the known test NHIs

are not present in the data set, permitting a simpler query to identify defective records:

SELECT DHB, NHI, Firstname, LastName, OperationDescription

FROM FLAT

WHERE bad_nhi = 1

 OR NHI IN ('HUX8660', 'PRP1660')

 OR NHI LIKE 'Z%'

ORDER BY NHI;

We can conveniently exclude such records by:
‡‡

ALTER TABLE FLAT ADD Excluded INTEGER DEFAULT 0;

UPDATE FLAT SET Excluded = 1 WHERE bad_nhi = 1;

UPDATE FLAT SET Excluded = 1 WHERE NHI IN ('HUX8660', 'PRP1660')

 OR NHI LIKE 'Z%';

3.4 Defective timestamps

A reasonable first test is the difference in time between WhenCreated and CreationTime. The

former refers to the creation of a drug administration record, and the latter to the creation of the

anesthetic record.

SELECT *

FROM FLAT

WHERE Excluded = 0

AND TIMESTAMPDIFF(HOUR, CreationTime, WhenCreated) < 0; -- [9]

This reassuringly provides just five additional records. We can add these to our tally of defects:

††

 Subsequent to data entry, it is possible for users to amend or delete the patient surname in the SAFERsleep database.
‡‡

 SQL statements that alter the database structure or contents are shown in red.

 Page 7

UPDATE FLAT SET Excluded = 1

WHERE TIMESTAMPDIFF(HOUR, CreationTime, WhenCreated) < 0;

We next examine records where the recorded time of drug administration is far in excess of the time

of creation of the anesthetic record (over 12 h):

SELECT

 NHI

 ,CreationTime

 ,WhenCreated

 ,TIMESTAMPDIFF(HOUR, CreationTime, WhenCreated) as Delta

 ,NotAdministeredReasonId

 ,AdministrationTime

 ,DHB

 ,OperationDescription

FROM FLAT

WHERE Excluded = 0

HAVING Delta >12

ORDER BY Delta DESC;

There are 104 such records. Forty-nine of these have excessive durations (24 h or more) and visual

inspection of these and the remainder suggested that all but a few represent erroneous timestamps

without other pathology. When we examine the cases where the time difference (Delta) is between

9 and 12 h, these are consistently complex and long operations.

In subsequent analyses I have excluded records with such times that are clearly in error.
§§

UPDATE FLAT

 SET Excluded = 1

WHERE TIMESTAMPDIFF(HOUR, CreationTime, WhenCreated) > 12;

We now reconcile two other time fields: WhenCreated and AdministrationTime, using a similar

query:

SELECT

 *

FROM FLAT

WHERE Excluded = 0

AND TIMESTAMPDIFF(HOUR, AdministrationTime, WhenCreated) < 0;

There are 43 such records. There is clustering of timestamp differences around -1 h and -23 h,

suggesting that these merely represent post-hoc data entry, or defects in manual entry of the date. I

have not excluded any records based on this minor field.

§§

 It is reasonable to argue that these should be left in, as the administration of NMBAs is documented as having

occurred, despite the timestamp errors; however the inaccuracy of the timestamps invites the possibility that the

records were generated outside the chosen date range for records. Either way, these records won't substantially

influence our denominator data.

 Page 8

3.5 Not administered

It's clearly important to exclude records where the stated drug was not actually administered. These

can be determined as follows:

SELECT count(1)

FROM FLAT

WHERE NotAdministeredReasonId IS NOT NULL

 AND Excluded = 0;

There are 1,375 such records. We will add these records to the Excluded group, but to distinguish

these from the preceding records, use the identifier 2 rather than 1:

UPDATE FLAT

 SET Excluded = 2

WHERE

 Excluded = 0

 AND NotAdministeredReasonId IS NOT NULL; -- [10]

Any nonzero value in Excluded reflects an exclusion. The breakdown of reasons for

nonadministration is shown in table 2:

SELECT

 NotAdministeredReasonId

 ,count(1) as Number

FROM FLAT

WHERE Excluded = 2

GROUP BY NotAdministeredReasonId

ORDER BY Number DESC; -- [11]

Table 2. Nonadministration (Reasons)

Reason Id Number

Inadvertent double scan 2 1,069

Decision changed 4 154

Other 6 74

Drug allergy or CI 5 40

Clinical condition changed 3 34

Near miss 1 4

I have not further examined the remaining fields, notably minor details of the process like

IsSoundOff, IsGeneric and IsDrugExpired as these are only peripherally relevant to our task.

Important fields considered in the following section are DrugName, Dose, DoseUnit,

IsInfusion, InfusionRate, IsBolus and WasRepeated.

3.6 Drug doses

Although not directly relevant to the current analysis, please note that a small number of the

recorded drug doses are implausible. These defects appear related to errors on manual entry of data

into the SAFERsleep user interface. See Query [19] on pages 12 and 25.

 Page 9

4. Results

In the preceding section, we identified records that could reasonably be excluded, and added the

field Excluded, which if nonzero indicates an exclusion. Table 3 summarises these exclusions (and

the included records) by record count, NHI count, and number of anesthetics.

Table 3. Summary of Data for Excluded Records

Metric Total Included Excluded % with exclusion

Records 237,469 235,421 2,048 0.86

NHIs 93,109 92,858 1,491 1.58

Anesthetics 112,834 111,395 1,439 1.28

SELECT

 count(1) as Records

 ,count(DISTINCT NHI) as NHIs

FROM FLAT

WHERE Excluded = 0; -- use <> 0 for exclusions [12],[13]

Because AnaestheticIds are not unique across DHBs, total anesthetics must be calculated as the

sum of anesthetics for the two DHBs.
¶¶

 The number of accepted records, anesthetics and NHIs

broken down by DHB (WDHB = 0, ADHB = 1) is shown in table 4.

Table 4. Breakdown of Inclusions by DHB

DHB Records Anesthetics NHIs

0 70,023 34,326 28,320

1 165,398 87,310 66,012

One NHI (The invalid, test NHI 'ZZZ0000') was excluded at both DHBs, and 1,474 NHIs share

valid records at both DHBs. For the latter query, an index will speed things:

CREATE INDEX flat_nhi_idx ON FLAT(NHI);

SELECT count(DISTINCT A.NHI)

FROM FLAT as A

 INNER JOIN FLAT as B

 ON A.NHI = B.NHI

WHERE A.Excluded = 0

 AND B.Excluded = 0

 AND A.DHB = 1

 AND B.DHB = 0; -- [14]

This query is significant as it demonstrates how patients are generally localised to a particular DHB,

at least in terms of our surgical population, with just 2.0–4.5% cross-over.

We can now proceed to our principal queries:

(a) Number of patients who received various neuromuscular blocking agents (NMBAs);

(b) Number of anesthetics in which these NMBAs were used;

(c) Total usage of the various NMBAs;

(d) Repeat doses of NMBAs within one anesthetic;

(e) Use of NMBA infusions.

¶¶

 SELECT DHB, COUNT(DISTINCT AnaestheticId) FROM FLAT WHERE Excluded = 0 GROUP BY DHB;

 Page 10

Table 5. Patient Exposure (as NHIs) to NMBAs

4.1 Patients who received NMBAs

The following query is central to our analysis:

SELECT

 DrugName

 ,count(DISTINCT NHI) as Patients

FROM FLAT

WHERE Excluded = 0

GROUP BY

 DrugName

ORDER BY

 DrugName; -- [15]

The above query spans the two hospitals; results are presented in table 5. The denominator for the

calculation of percentages is the included NHIs (92,858) from table 3. As some patients were

exposed to more than one NMBA (commonly succinylcholine and another agent), the percentage

data from table 5 add up to more than 100%. It is clear that the predominant drug used was

atracurium, followed by rocuronium, succinylcholine and vecuronium. The use of the unhelpful

generic term “Muscle Relaxant” in a small number of cases is explored in Section 4.6.

Although it is possible to analyse the denominator data by number of anesthetics (and these data are

indeed presented below) we chose number of distinct patients as we believe this provides a more

reasonable denominator. (In any case, use of the former does not substantially alter the major

outcomes of the study).

Breakdown by DHB

It is also possible to break down exposure of patients (distinct NHIs) to the NMBAs by DHB.

SELECT

 DrugName ,DHB ,count(DISTINCT NHI) as Patients

FROM FLAT

WHERE Excluded = 0

GROUP BY DrugName ,DHB

ORDER BY DrugName ,DHB; -- [16]

The results of this query are presented in table 6. Note however that this query does not

accommodate the relatively small number of patients who attended both DHBs, as they are

represented in both columns.

DrugName Patients Percentage of NHIs

Atracurium 67,354 72.5

Mivacurium 1,658 1.8

Muscle Relaxant 332 0.4

Pancuronium 3,799 4.1

Rocuronium 14,995 16.1

Succinylcholine 24,960 26.9

Vecuronium 9,585 10.3

 Page 11

Table 6. Patient Exposure to NMBAs, by DHB

The analysis presented in table 7 is similar to that of table 5, but provides breakdown by anesthetic

and DHB. The percentages refer to total nonexcluded anesthetics for the two DHB hospitals, i.e.

with respective denominators of 34,326 and 87,310 derived from table 4. The predominant drug is

atracurium, followed by succinylcholine and rocuronium, with little use of the other agents. Again,

as more than one agent may have been used during the same anesthetic, the percentages add up to

over 100%.

SELECT

 DrugName

 ,DHB

 ,count(DISTINCT AnaestheticId) as Anaesthetics

FROM FLAT

WHERE Excluded = 0

GROUP BY

 DrugName

 ,DHB

ORDER BY

 DrugName

 ,DHB; -- [17]

Table 7. NMBAs and Anesthetic Count

DrugName WDHB % ADHB % Total %

Atracurium 25,227 73.5 58,825 67.4 84,052 69.1

Mivacurium 607 1.8 1,095 1.3 1,702 1.4

Muscle Relaxant 29 0.1 305 0.3 334 0.3

Pancuronium 18 0.1 3,948 4.5 3,966 3.3

Rocuronium 3,915 11.4 12,470 14.3 16,385 13.5

Succinylcholine 11,512 33.5 16,271 18.6 27,783 22.8

Vecuronium 1,689 4.9 8,729 10.0 10,418 8.6

DrugName WDHB % ADHB %

Atracurium 21,943 77.5 46,268 70.1

Mivacurium 588 2.1 1,073 1.6

Muscle Relaxant 29 0.1 303 0.5

Pancuronium 18 0.1 3,781 5.7

Rocuronium 3,740 13.2 11,290 17.1

Succinylcholine 10,024 35.4 15,055 22.8

Vecuronium 1,632 5.8 7,979 12.1

 Page 12

Table 8. Total NMBA Usage (Grams)

4.3 Total NMBA usage

As each administration record should be associated with a dosage, it should also be possible to

estimate total consumption of each drug, as the sum of these doses. There are some inconsistencies

within the DoseUnit field:

SELECT

 DoseUnit

 ,count(1) as Entries

FROM FLAT

WHERE Excluded = 0

GROUP BY DoseUnit; -- [18]

In 235,335 instances the value is “mg”; 8 have “mg/h” or “mg/hr”; 37 have “mcg”, 1 “ugm”

(presumably micrograms/min), 3 state “ml” and 37 have null (or place-holder) entries. The few

aberrant values reflect the 'configurability' of SAFERsleep. The following query examines the

records with “mg” unit values.

SELECT

 DHB

 ,DrugName

 ,SUM(Dose)/1000 as Total_grams

FROM FLAT

WHERE Excluded = 0

 AND DoseUnit = 'mg'

 AND Dose < 200

GROUP BY

 DHB

 ,DrugName

ORDER BY

 DHB,

 DrugName; -- [19]

The results of the query are shown in table 8. (Rounding accounts for the inexact sums). The crude

limit (Dose < 200) compensates for extreme deviations introduced by manual data entry errors as

noted in Section 3.6. More precise refinements introduce little further correction.

DrugName WDHB ADHB Total_grams

Atracurium 1,084 2,469 3,553

Mivacurium 8 13 21

“Muscle Relaxant” 0 (8) (8)

Pancuronium 0 32 32

Rocuronium 204 811 1,015

Succinylcholine 1,106 1,462 2,569

Vecuronium 15 85 100

 Page 13

Table 9. Repeat Doses of NMBAs

4.4 Repeat doses of NMBAs

I here determine the number of anesthetics in which more than one dose of a particular agent was

given (Contrasting table 4 and table 5 suggests the magnitude of this repeat usage).

SELECT

 AnaestheticId ,DHB ,DrugName

 ,count(1) as Doses

FROM FLAT

WHERE Excluded = 0

GROUP BY

 DHB ,AnaestheticId ,DrugName

HAVING Doses > 1

ORDER BY DHB,DrugName; -- [20]

This provides 47,047 such repeat doses for the various agents. Count the numbers for each agent:

SELECT

 REPEATS.DrugName

 ,REPEATS.DHB

 ,count(1)

FROM

(SELECT

 AnaestheticId ,DHB ,DrugName

 ,count(1) as Doses

FROM FLAT

WHERE Excluded = 0

GROUP BY

 DHB ,AnaestheticId ,DrugName

HAVING Doses > 1

ORDER BY

 DHB

 ,DrugName) as REPEATS

GROUP BY

 REPEATS.DrugName

 ,REPEATS.DHB

ORDER BY

 REPEATS.DrugName

 ,REPEATS.DHB; -- [21]

The results of this query are presented in table 9, with the DHBs in columns. Note that these

numbers reflect at least one repeat dose.

DrugName WDHB ADHB

Atracurium 10,365 22,671

Mivacurium 108 117

Muscle Relaxant 2 61

Pancuronium 1 1,376

Rocuronium 1,692 5,865

Succinylcholine 87 123

Vecuronium 870 3,709

 Page 14

Table 10. NMBA Infusions

4.5 NMBA infusions

The IsInfusion field was used to identify use of NMBA infusions. (An idiosyncrasy of

SAFERsleep is that this Boolean value is a text field containing either 'FALSE' or 'TRUE').

SELECT

 DrugName

 ,count(DISTINCT AnaestheticId) as Anaesthetics

FROM FLAT

WHERE Excluded = 0

 AND IsInfusion = 'TRUE'

GROUP BY

 DrugName

ORDER BY

DrugName; -- [22]

The results are presented in table 10. It's worth noting that for several of these anesthetics, more

than one “IsInfusion” entry is present (easily determined by replacing “DISTINCT AnaestheticId”

in the above query with “1”). Of further interest is infusion of Succinylcholine. The

OperationDescription fields for these data record “Laparoscopy” and “Crash LSCS”; in neither

case is an InfusionRate recorded.

This invites further examination of the InfusionRate field:

SELECT

 DrugName

 ,Count(1) as Instances

FROM FLAT

WHERE Excluded = 0

 AND isInfusion = 'TRUE'

 AND (InfusionRate = 0

 OR InfusionRate IS NULL)

GROUP BY DrugName

ORDER BY DrugName; -- [23]

There are 166 instances of zero/null infusions for atracurium, the corresponding values for

mivacurium are 16, rocuronium 10, vecuronium 6, pancuronium 5 and succinylcholine 2. These

values suggest inaccurate data capture for these instances.

DrugName Anesthetics

Atracurium 527

Mivacurium 22

Pancuronium 10

Rocuronium 24

Succinylcholine 2

Vecuronium 21

 Page 15

Table 11. Doses: Scanned Id v Actual Drug

4.6 “Muscle Relaxant” and name matching

Data entry of drug administration into the SAFERsleep system can be by barcode scanning or

manual entry. The small number of generic “Muscle Relaxant” entries (in 0.3% of anesthetics, as

per table 5) suggests that identification of the individual agents worked well.

Anesthetic practices can be further examined by looking at the concordance between the scanned

barcode number and the final agent used as represented in the DrugName field. (The anesthetist can

manually override the scanned identifier).

SELECT

 DrugName

 ,ScannedBarCodeNumber

 ,count(1) as Count

FROM FLAT

WHERE Excluded = 0

GROUP BY

 DrugName

 ,ScannedBarCodeNumber

ORDER BY

 DrugName

 ,ScannedBarCodeNumber; -- [24]

Table 11 reflects the results of this query, appropriately formatted. Scanning appears to have been

used in 54.7% of instances, manual entry (absent scan identifier) in 44.8%, and alterations were

made to the remaining 0.5% of entries.

 Scanned identifier Total

DrugName NULL % Matching % Altered %

Atracurium 60,705 40.6 88,134 58.9 796 0.5 149,635

Mivacurium 1,267 63.0 710 35.3 34 1.7 2,011

Muscle Relaxant 9 2.1 420 97.9 0 0 429

Pancuronium 2,842 49.1 2,907 50.2 44 0.8 5,793

Rocuronium 15,545 50.5 15,201 49.4 36 0.1 30,782

Succinylcholine 14,639 52.2 13,283 47.4 98 0.3 28,020

Vecuronium 10,517 56.1 8,179 43.6 55 0.3 18,751

 Page 16

5. Listing of code

The following listings have been removed to this section, as they are fairly lengthy and therefore

disrupt the flow of the preceding text.

Listing 1. Query used to extract data from SQL Server database at ADHB.

SELECT

 Drg.DrugName

 ,Pt.NHI

 ,case

 when EVIL.invalid = 1 then 1

 else 0

 end as bad_nhi

 , case

 when dodgy.IsDodgy = 1

 OR Pt.LastName IS NULL

 OR Pt.DOB < '1900-01-01'

 OR Pt.DOB IS NULL

 OR LEN(Pt.LastName) < 2

 OR Pt.Sex IS NULL

 OR Pt.LastName = 'demo'

 OR Pt.NHI = 'HUX8660' -- identify Mickey Mouse :-(

 OR Pt.LastName LIKE '%xx%'

 then 1

 else

 0

 end as suspect_data

 ,Pt.Sex

 ,Pt.DOB

 , Pt.Firstname

 , Pt.LastName

 ,An.CreationTime

 ,replace(replace(cast(An.OperationDescription as

varchar(256)),char(10),''),char(13),'') as OperationDescription

 ,DrAdm.DrugAdministrationId

 ,DrAdm.AnaestheticId

 ,0 as DrugPresentationId -- was: DrAdm.DrugPresentationId

 ,DrAdm.NotAdministeredReasonId

 ,DrAdm.AdministrationTime

 ,DrAdm.ScannedBarCodeNumber

 ,DrAdm.IsSoundOff

 ,DrAdm.IsDrugExpired

 ,DrAdm.Dose

 ,DrAdm.DoseUnit

 ,0 as IsGeneric -- was: DrAdm.IsGeneric

 ,DrAdm.IsInfusion

 ,DrAdm.InfusionRate

 ,DrAdm.InfusionRateUnit

 ,DrAdm.IsInfusionPurge

 ,DrAdm.IsBolus

 ,DrAdm.Comment

 ,replace(replace(cast(DrAdm.NotAdministeredComment as

varchar(64)),char(10),''),char(13),'')

 ,DrAdm.WasRepeated

 ,DrAdm.WhenCreated

 ,1 as DHB -- signal ADHB

FROM [SaferSleep].[dbo].[Class] as Cla

 -- use Cla.Description to identify neuromuscular blocking agents

 Page 17

 INNER JOIN [SaferSleep].[dbo].[DrugClass] as DrgCla

 ON Cla.ClassId = DrgCla.ClassId

 INNER JOIN [SaferSleep].[dbo].[DrugProductComponent] as DrPrCo

 ON DrgCla.DrugId = DrPrCo.DrugId

 INNER JOIN [SaferSleep].[dbo].[DrugAdministration] as DrAdm -- the key table

 ON DrPrCo.DrugProductId = DrAdm.DrugProductId

 INNER JOIN [SaferSleep].[dbo].[Anaesthetic] as An

 ON An.AnaestheticId = DrAdm.AnaestheticId

 INNER JOIN [SaferSleep].[dbo].[Drug] as Drg

 ON DrPrCo.DrugId = Drg.DrugId

 INNER JOIN [SaferSleep].[dbo].[AnaestheticPatient] as AnPt

 ON An.AnaestheticId = AnPt.AnaestheticId

 INNER JOIN [SaferSleep].[dbo].[Patient] as Pt

 ON AnPt.PatientId = Pt.PatientId

 LEFT OUTER JOIN

 -- clumsy = validate NHIs in SAFERsleep, make list, join...

 (SELECT

 OUTX.NHI BADNHI

 ,1 invalid

FROM

(SELECT

 X.NHI

 ,case

 when X.c1 = 0

 or X.c2 = 0

 or X.c3 = 0

 then -1

 when (7*X.c1 + 6*X.c2 + 5*X.c3 + 4*X.d1 + 3*X.d2 + 2*X.d3) % 11 = 0

 then 0

 when (11 - (7*X.c1 + 6*X.c2 + 5*X.c3 + 4*X.d1 + 3*X.d2 + 2*X.d3)%11) % 10

= X.chk

 then 1

 else 0

 end as valid

FROM

 (SELECT

 Pt.NHI as NHI

 , case

 when ascii (substring(Pt.NHI, 1, 1)) - 64 BETWEEN 1 AND 8

 then ascii (substring(Pt.NHI, 1, 1)) - 64

 when ascii (substring(Pt.NHI, 1, 1)) - 64 BETWEEN 10 AND 14

 then ascii (substring(Pt.NHI, 1, 1)) - 65

 when ascii (substring(Pt.NHI, 1,1)) - 64 BETWEEN 16 AND 26

 then ascii (substring(Pt.NHI, 1, 1)) - 66

 else 0

 end as c1

 , case

 when ascii (substring(Pt.NHI, 2, 1)) - 64 BETWEEN 1 AND 8

 then ascii (substring(Pt.NHI, 2, 1)) - 64

 when ascii (substring(Pt.NHI, 2, 1)) - 64 BETWEEN 10 AND 14

 then ascii (substring(Pt.NHI, 2, 1)) - 65

 when ascii (substring(Pt.NHI, 2, 1)) - 64 BETWEEN 16 AND 26

 then ascii (substring(Pt.NHI, 2, 1)) - 66

 else 0

 end as c2

 , case

 when ascii (substring(Pt.NHI, 3, 1)) - 64 BETWEEN 1 AND 8

 then ascii (substring(Pt.NHI, 3, 1)) - 64

 when ascii (substring(Pt.NHI, 3, 1)) - 64 BETWEEN 10 AND 14

 then ascii (substring(Pt.NHI, 3, 1)) - 65

 when ascii (substring(Pt.NHI, 3, 1)) - 64 BETWEEN 16 AND 26

 Page 18

 then ascii (substring(Pt.NHI, 3, 1)) - 66

 else 0

 end as c3

 ,convert (integer, substring(Pt.NHI, 4, 1)) as d1

 ,convert (integer, substring(Pt.NHI, 5, 1)) as d2

 ,convert (integer, substring(Pt.NHI, 6, 1)) as d3

 ,convert (integer, substring(Pt.NHI, 7, 1)) as chk

 FROM [SAFERsleep].[dbo].[Patient] Pt

) as X

) as OUTX

WHERE OUTX.valid <> 1) as EVIL

 ON Pt.NHI = EVIL.BADNHI

 -- end clumsy

 -- third check = possible duplicates based on DOB match

 LEFT OUTER JOIN

 (SELECT distinct

 PtA.PatientId as PtId -- must be DISTINCT

 , 1 as IsDodgy

FROM

 [SAFERsleep].[dbo].[patient] as PtA

INNER JOIN

 [SAFERsleep].[dbo].[patient] as PtB

 ON PtA.DOB = PtB.DOB -- match on DOB

 WHERE

 PtA.NHI <> PtB.NHI -- match both ways

 AND PtA.Sex = PtB.Sex

 AND ((UPPER(PtA.FirstName) = UPPER(PtB.FirstName)

 AND PtA.Sex='F' -- with women try to identify change in Surname

)

 OR UPPER(PtA.LastName) = UPPER(PtB.LastName) -- UPPER is redundant

with SQL server, sigh.

)

) dodgy

 ON dodgy.PtId = Pt.PatientId

 -- end third check

WHERE

 Cla.Description LIKE 'Muscle%'

 AND An.CreationTime BETWEEN '2006-01-01 00:00:00' and '2012-12-31 23:59:59'

ORDER BY

 bad_nhi desc,

 suspect_data desc,

 NHI,

 DrAdm.AdministrationTime;

 Page 19

Operational notes.

The query to retrieve data at ADHB was run on 23 September 2013.

 In addition to fulfilling the primary objective of retrieving the relevant records, the listed code also

does the following:

1. Carriage returns (0x0D) and line feeds (0x0A) within the comment that describes the reason for

nonadministration of a drug (DrAdm.NotAdministeredComment) are replaced with blanks;

2. Defective NHIs are flagged (The last digit of the NHI is a check-digit, and the above code

implements this check);

3. Suspect records are identified on the basis of:

3.1. Records where the date of birth is the same as the date of birth for another patient in the

SAFERsleep database, and the NHI differs, and the gender is the same, and the surname is

the same (or the forename is the same and the gender is female);

3.2. Absent surname;

3.3. Unusual date of birth;

3.4. Absent gender;

3.5. Known test records (The database prominently contains data attached to the NHI

'HUX8660' or “Mickey Mouse”);

Condition 3.1 is tested by …
FROM

 [SAFERsleep].[dbo].[patient] as PtA

INNER JOIN

 [SAFERsleep].[dbo].[patient] as PtB

 ON PtA.DOB = PtB.DOB -- match on DOB

 WHERE

 PtA.NHI <> PtB.NHI -- match both ways

 AND PtA.Sex = PtB.Sex

 AND ((UPPER(PtA.FirstName) = UPPER(PtB.FirstName)

 AND PtA.Sex='F'

)

 OR UPPER(PtA.LastName) = UPPER(PtB.LastName)

… and the latter several questions (3.2 – 3.5) by:
when dodgy.IsDodgy = 1

 OR Pt.LastName IS NULL

 OR Pt.DOB < '1900-01-01'

 OR Pt.DOB IS NULL

 OR LEN(Pt.LastName) < 2

 OR Pt.Sex IS NULL

 OR Pt.LastName = 'demo'

 OR Pt.NHI = 'HUX8660'

 OR Pt.LastName LIKE '%xx%'

These queries actually turned out not to be very helpful, likely a reflection of the accuracy of the

NHIs in identifying patients.

 This observation is relevant as it is possible for users to, e.g., alter a surname inappropriately, changing the results of

the “IsDodgy” query. I have noted such an occurrence in one case, over the course of a week between queries.

 Page 20

Listing 2. SQL statement used to create MySQL flat-file database for analysis

create schema unity CHARACTER SET=utf8 COLLATE=utf8_general_ci;

use unity;

CREATE TABLE FLAT

(DrugName varchar(64)

 ,NHI varchar(7)

 ,bad_nhi integer

 ,suspect_data integer

 ,Sex varchar(1)

 ,DOB datetime default NULL

 ,Firstname varchar(32)

 ,LastName varchar(64)

 ,CreationTime datetime default NULL

 ,OperationDescription varchar(256)

 ,DrugAdministrationId integer

 ,AnaestheticId integer

 ,DrugPresentationId integer

 ,NotAdministeredReasonId integer

 ,AdministrationTime datetime default NULL

 ,ScannedBarCodeNumber varchar(20)

 ,IsSoundOff varchar(5)

 ,IsDrugExpired varchar(5)

 ,Dose integer

 ,DoseUnit varchar(16)

 ,IsGeneric varchar(5)

 ,IsInfusion varchar(5)

 ,InfusionRate integer

 ,InfusionRateUnit varchar(16)

 ,IsInfusionPurge varchar(5)

 ,IsBolus varchar(5)

 ,Comment varchar(256)

 ,NotAdministeredComment varchar(256)

 ,WasRepeated varchar(5)

 ,WhenCreated datetime default NULL

 ,DHB integer default 0

);

As noted in Section 2.1, the DrugPresentationId and IsGeneric fields are not used.

 Page 21

Listing 3. MySQL command line statements used to populate database.

-- from WDHB:
set max_error_count=65535;

load data local infile 'P:/projects/anaphylaxis/WDHB_data.csv'

-- load data local infile '/home/jvs/Projects/unity/WDHB_DATA.csv'

 into table FLAT

 fields terminated by ','

 enclosed by '"'

 lines terminated by '\n'

 ignore 1 lines

 (DrugName ,@NHI ,bad_nhi ,suspect_data ,Sex ,@DOB ,Firstname

 ,LastName ,@CreationTime ,OperationDescription ,DrugAdministrationId

 ,AnaestheticId ,DrugPresentationId ,NotAdministeredReasonId

 ,@AdministrationTime ,ScannedBarCodeNumber ,IsSoundOff

 ,IsDrugExpired ,Dose ,DoseUnit ,IsGeneric ,IsInfusion

 ,InfusionRate ,InfusionRateUnit ,IsInfusionPurge ,IsBolus

 ,Comment ,NotAdministeredComment ,WasRepeated ,@WhenCreated)

SET DOB = STR_TO_DATE(@DOB, '%d/%m/%Y %H:%i'),

 CreationTime = STR_TO_DATE(@CreationTime, '%d/%m/%Y %H:%i'),

 AdministrationTime = STR_TO_DATE(@AdministrationTime, '%d/%m/%Y %H:%i'),

 WhenCreated = STR_TO_DATE(@WhenCreated, '%d/%m/%Y %H:%i'),

 NHI = RTRIM(@NHI);

The header line is ignored. The CSV file contained 64,720 data lines, and resulted in this number of

row insertions into the database. Warnings are related to NULL timestamps (mostly for the

WhenCreated field).

A similar query is used for the ancillary file from WDHB that contains 5,955 data lines, altering the

first line of the above query to:
load data local infile 'P:/projects/anaphylaxis/WDHB_late2012.csv'

-- load data local infile '/home/jvs/Projects/unity/WDHB_late2012.csv'

-- from ADHB:
load data local infile 'P:/projects/anaphylaxis/ADHB_data_all.csv'

-- load data local infile '/home/jvs/Projects/unity/ADHB_DATA_all.csv'

 into table FLAT

 fields terminated by ','

 enclosed by '"'

 lines terminated by '\n'

 ignore 1 lines

 (DrugName ,NHI ,bad_nhi ,suspect_data ,Sex ,DOB ,Firstname

 ,LastName ,CreationTime ,OperationDescription ,DrugAdministrationId

 ,AnaestheticId ,DrugPresentationId ,NotAdministeredReasonId

 ,AdministrationTime ,ScannedBarCodeNumber ,IsSoundOff

 ,IsDrugExpired ,Dose ,DoseUnit ,IsGeneric ,IsInfusion

 ,InfusionRate ,InfusionRateUnit ,IsInfusionPurge ,IsBolus

 ,Comment ,NotAdministeredComment ,WasRepeated ,WhenCreated,DHB);

I stored the query here with a header, so I ignore the first of the 166,795 lines.
†††

 Importation details

are discussed in Section 2.1. The total number of lines imported should be 166,794 + 64,720 +

5,955 = 237,469 lines: select count(1) from FLAT;

†††

 To store the CSV with quoted strings in MS SQL Server Management Studio, under Query | Query options |

Results, check the box that says “Quote strings ...”. The “Include column headers” option is here too.

 Page 22

Listing 4. Reconciliation of minor NHIs at ADHB

SELECT

 distinct Pt.NHI as Minor

 , a2.sAliasIdCode as Major

 -- , a1.lAliasTypeId

FROM [SaferSleep].[dbo].[Class] as Cla -- use Cla.Description to identify

neuromuscular blocking agents

 INNER JOIN [SaferSleep].[dbo].[DrugClass] as DrgCla

 ON Cla.ClassId = DrgCla.ClassId

 INNER JOIN [SaferSleep].[dbo].[DrugProductComponent] as DrPrCo

 ON DrgCla.DrugId = DrPrCo.DrugId

 INNER JOIN [SaferSleep].[dbo].[DrugAdministration] as DrAdm -- the key table

 ON DrPrCo.DrugProductId = DrAdm.DrugProductId

 INNER JOIN [SaferSleep].[dbo].[Anaesthetic] as An

 ON An.AnaestheticId = DrAdm.AnaestheticId

 INNER JOIN [SaferSleep].[dbo].[Drug] as Drg

 ON DrPrCo.DrugId = Drg.DrugId

 INNER JOIN [SaferSleep].[dbo].[AnaestheticPatient] as AnPt

 ON An.AnaestheticId = AnPt.AnaestheticId

 INNER JOIN [SaferSleep].[dbo].[Patient] as Pt

 ON AnPt.PatientId = Pt.PatientId

 INNER JOIN prodPatient.dbo.Alias a1

 ON a1.sAliasIdCode = Pt.NHI

 INNER JOIN prodPatient.dbo.Alias a2 ON a1.lPatientId = a2.lPatientId

WHERE a1.lAliasTypeId <>1

 AND a2.lAliasTypeId = 1 -- Primary NHI

 AND Cla.Description LIKE 'Muscle%'

 AND An.CreationTime BETWEEN '2006-01-01 00:00:00' and '2012-12-31 23:59:59';

This is exported as ADHB_minor_major.csv and can then be imported into the unity database as

follows:

create table minority(

 minor varchar(7)

 ,major varchar(7)

);

 CREATE INDEX minority_minor_idx ON minority(minor);

CREATE INDEX minority_major_idx ON minority(major);

Then import the exported csv (788 rows):

load data local infile 'P:/projects/anaphylaxis/ADHB_minor_major.csv'

-- load data local infile '/home/jvs/Projects/unity/ADHB_minor_major.csv'

 into table minority

 fields terminated by ','

 enclosed by '"'

 lines terminated by '\n'

 ignore 1 lines

 (minor, major);

Finally we replace minor NHIs throughout the database with primary NHIs, with 2,276 alterations.

update FLAT, minority

set FLAT.NHI = minority.major

where FLAT.NHI = minority.minor;

 Page 23

6. Anonymized data

The data set is available as an anonymised CSV table (anonymous2.csv). To recreate the

anonymized data set on within a recent version of MySQL on your local machine, from the MySQL

command line enter the following commands:

CREATE DATABASE X;

USE X;

CREATE TABLE ANON

(DrugName varchar(64)

 ,NHI integer -- anonymise NHI

 ,bad_nhi integer

 ,suspect_data integer

 ,CreationTime integer -- year only

 ,AnaestheticId integer -- anonymise AnaestheticId

,NotAdministeredReasonId integer

,Delta integer -- time difference as above

 ,ScannedBarCodeNumber varchar(20)

 ,Dose integer

 ,DoseUnit varchar(16)

 ,IsInfusion varchar(5)

 ,InfusionRate integer

 ,InfusionRateUnit varchar(16)

 ,IsBolus varchar(5)

 ,WasRepeated varchar(5)

,DHB integer

,Excluded integer);

CREATE INDEX anon_nhi_idx ON ANON(NHI);

load data local infile 'C:/anaphylaxis/anonymous2.csv'

 into table ANON

 fields terminated by ','

 enclosed by '"'

 lines terminated by '\n'

 ignore 1 lines

(DrugName ,NHI ,bad_nhi ,suspect_data ,CreationTime ,AnaestheticId ,NotAdminist

eredReasonId ,Delta ,ScannedBarCodeNumber ,Dose ,DoseUnit ,IsInfusion ,Infusio

nRate ,InfusionRateUnit ,IsBolus ,WasRepeated ,DHB ,Excluded);

You will need to alter the path name from C:/anaphylaxis/.. to specify where you stored the CSV

file anonymous2.csv. Although it is anticipated that many current users will be working in a

Microsoft Windows environment, the above statements will work under Linux, with appropriate

alterations to path names.

The details of how the anonymous data set was derived from the main database are described in

Section 6.2.

 Page 24

6.1 Querying the anonymous data

The following queries can now be performed to confirm the corresponding (numbered) queries on

the FLAT database in the main body of this document.

SELECT count(1) FROM `ANON` WHERE 1; -- [1]

SELECT count(DISTINCT NHI) FROM `ANON` WHERE 1; -- [2]

SELECT DHB ,count(DISTINCT AnaestheticId) FROM `ANON` GROUP BY DHB; -- [3]

SELECT * FROM ANON WHERE bad_nhi = 1 ORDER BY NHI; -- [4]

SELECT count(1) FROM ANON WHERE suspect_data = 1 ORDER BY NHI; -- [5]

SELECT count(distinct NHI) FROM ANON WHERE suspect_data = 1; -- [6]

SELECT DHB ,count(distinct Anaestheticid) FROM ANON

WHERE suspect_data = 1 GROUP BY DHB; -- [7]

SELECT count(1) FROM ANON WHERE suspect_data = 1 AND bad_nhi <> 1; -- [8]

SELECT * FROM ANON WHERE DELTA < 0; -- [9]

SELECT count(1) FROM ANON WHERE NotAdministeredReasonId IS NOT NULL

 AND Excluded = 2; -- [10]

SELECT NotAdministeredReasonId ,count(1) as Number FROM ANON

WHERE Excluded = 2 GROUP BY NotAdministeredReasonId

ORDER BY Number DESC; -- [11]

SELECT count(1) as Records ,count(DISTINCT NHI) as NHIs

FROM ANON WHERE Excluded = 0; -- [12]

SELECT count(1) as Records ,count(DISTINCT NHI) as NHIs

FROM ANON WHERE Excluded <> 0; -- [13]

SELECT count(DISTINCT A.NHI) FROM ANON as A INNER JOIN ANON as B

 ON A.NHI = B.NHI

WHERE A.Excluded = 0 AND B.Excluded = 0 AND A.DHB = 1 AND B.DHB = 0; -- [14]

SELECT DrugName ,count(DISTINCT NHI) as Patients

FROM ANON WHERE Excluded = 0 GROUP BY DrugName ORDER BY DrugName; -- [15]

SELECT DrugName ,DHB ,count(DISTINCT NHI) as Patients

FROM ANON WHERE Excluded = 0 GROUP BY DrugName ,DHB

ORDER BY DrugName ,DHB; -- [16]

 Page 25

SELECT DrugName ,DHB ,count(DISTINCT AnaestheticId) as Anaesthetics

FROM ANON WHERE Excluded = 0 GROUP BY DrugName ,DHB

ORDER BY DrugName ,DHB; -- [17]

SELECT DoseUnit ,count(1) as Entries FROM ANON

WHERE Excluded = 0 GROUP BY DoseUnit; -- [18]

SELECT DHB ,DrugName ,SUM(Dose)/1000 as Total_grams

FROM ANON WHERE Excluded = 0 AND DoseUnit = 'mg'

AND Dose < 200 GROUP BY DHB, DrugName ORDER BY DHB, DrugName; -- [19]

SELECT AnaestheticId ,DHB ,DrugName ,count(1) as Doses

FROM ANON WHERE Excluded = 0 GROUP BY DHB ,AnaestheticId ,DrugName

HAVING Doses > 1 ORDER BY DHB,DrugName; -- [20]

SELECT REPEATS.DrugName ,REPEATS.DHB ,count(1)

FROM (SELECT AnaestheticId ,DHB ,DrugName

 ,count(1) as Doses FROM ANON WHERE Excluded = 0

 GROUP BY DHB ,AnaestheticId ,DrugName HAVING Doses > 1) as REPEATS

GROUP BY REPEATS.DrugName ,REPEATS.DHB ORDER BY REPEATS.DrugName

 ,REPEATS.DHB; -- [21]

SELECT DrugName ,count(DISTINCT AnaestheticId) as Anaesthetics

FROM ANON WHERE Excluded = 0 AND IsInfusion = 'TRUE'

GROUP BY DrugName ORDER BY DrugName; -- [22]

SELECT DrugName ,Count(1) as Instances

FROM ANON WHERE Excluded = 0 AND isInfusion = 'TRUE'

 AND (InfusionRate = 0 OR InfusionRate IS NULL)

GROUP BY DrugName ORDER BY DrugName; -- [23]

SELECT DrugName ,ScannedBarCodeNumber ,count(1) as Count

FROM ANON WHERE Excluded = 0

GROUP BY DrugName ,ScannedBarCodeNumber

ORDER BY DrugName ,ScannedBarCodeNumber; -- [24]

 Page 26

6.2 Details of anonymization

In the anonymized data, the following fields have been stripped from the primary database:

1. Forename and surname;

2. Gender;

3. Birth date,

4. Time of administration of the dose, and time of creation of drug entry;

5. DrugAdministrationId, and the redundant fields DrugPresentationId and IsGeneric.

The time of creation of the record has been reduced to a year only. In addition the NHI and

Anesthetic ID have each been randomly assigned a unique number (a number that is in no way

related to the original identifier). The following method of randomization was used:

1. Rows in the FLAT table were each assigned a unique identifier:

ALTER TABLE FLAT ADD ID INT auto_increment primary key;

2. Two extra rows were added to FLAT to accommodate random values:

ALTER TABLE FLAT ADD rndA int;
ALTER TABLE FLAT ADD rndB int;

3. A true random number generator
‡‡‡

 was used to generate over 2*237,469 random values.

4. These random values were imported into a separate table:

CREATE TABLE RNDM (ID int auto_increment primary key, rndm int);

load data local infile 'C:/anaphylaxis/uniform_int.csv'

 into table RNDM lines terminated by '\n' ignore 10 lines (rndm);

5. Random values were copied into rndA and rndB:

update FLAT, RNDM set FLAT.rndA = RNDM.rndm where FLAT.id = RNDM.id;
update FLAT, RNDM set FLAT.rndB = RNDM.rndm where RNDM.id =

237469+FLAT.id;

6. NHIs were then randomly mapped to integers from 1–93109 as follows:

CREATE TABLE NHI (NHI varchar(7), ID int auto_increment,

constraint primary key(ID));

CREATE INDEX nhi_nhi_idx ON NHI(NHI);

INSERT INTO NHI(NHI)

 SELECT NHI from FLAT GROUP BY NHI order by min(rndA);

7. AnaestheticID was similarly mapped to integers from 1–122004, taking DHB into account,

by:

CREATE TABLE ANID (AnaestheticId int, DHB int, ID int auto_increment,

constraint primary key(ID));

CREATE INDEX anid_id_idx ON ANID(AnaestheticId);

INSERT INTO ANID(AnaestheticId, DHB)

 SELECT AnaestheticId, DHB FROM FLAT

GROUP BY AnaestheticId, DHB order by min(rndB);

I next created the ANON table as described above, and then said:

‡‡‡

 Not a pseudorandom number generator, but one based on random noise acquired from a reverse-biased zener diode,

suitably processed to convert a normal distribution into a uniform one. Both the generator and the specific random

sequence used met criteria for randomness on testing with the Dieharder suite, version 3.31.1, available from

http://www.phy.duke.edu/~rgb/General/dieharder.php (tested under Ubuntu Linux version 12.10, Last accessed

August 21, 2014).

http://www.phy.duke.edu/~rgb/General/dieharder.php

 Page 27

INSERT INTO ANON

 (DrugName, NHI, bad_nhi, suspect_data,

 CreationTime, AnaestheticId, NotAdministeredReasonId,

Delta,

ScannedBarCodeNumber, Dose, DoseUnit, IsInfusion,

InfusionRate, InfusionRateUnit, IsBolus, WasRepeated, DHB, Excluded)

SELECT DrugName, NHI.ID, bad_nhi, suspect_data,

YEAR(CreationTime), ANID.ID, NotAdministeredReasonId,

TIMESTAMPDIFF(HOUR, CreationTime, WhenCreated),

ScannedBarCodeNumber, Dose, DoseUnit, IsInfusion,

InfusionRate, InfusionRateUnit, IsBolus, WasRepeated, FLAT.DHB, Excluded

FROM FLAT

INNER JOIN NHI on FLAT.NHI = NHI.NHI

INNER JOIN ANID

 on FLAT.AnaestheticId = ANID.AnaestheticId AND FLAT.DHB=ANID.DHB;

SELECT DrugName ,NHI ,bad_nhi ,suspect_data

,CreationTime ,AnaestheticId ,NotAdministeredReasonId,

Delta ,ScannedBarCodeNumber ,Dose ,DoseUnit ,IsInfusion

,InfusionRate ,InfusionRateUnit ,IsBolus ,WasRepeated ,DHB ,Excluded

FROM ANON

INTO OUTFILE 'C:/anaphylaxis/anonymous2.csv'

FIELDS TERMINATED BY ','

ENCLOSED BY '"'

LINES TERMINATED BY '\n';

Potential for de-anonymization
This appears slight, for the following reasons:

1. Important patient identifiers and identifying properties have been stripped off (Name,

gender, date of birth, timestamps for interventions) or replaced by random values (NHI,

internal anesthetic record identifier).

2. The date of record creation has been reduced to a year;

3. There are sufficiently large numbers for identification of the DHB to be irrelevant to patient

identification;

4. The ‘Exclusions’ field simply refers to records excluded as described previously;

5. The remaining data fields (ScannedBarcodeNumber, Dose, DoseUnits, IsInfusion,

InfusionRate, InfusionRateUnit, IsBolus, WasRepeated, NotAdministeredReasonId, Delta)

refer to the associated drug usage, and there are multiple instances of usage of the drugs for

each year. Even with ‘unusual modalities’ such as infusions of various agents, the number of

instances in a year appears to limit association of a given instance with a particular

individual, e.g.

select creationtime, count(1) from ANON where isinfusion = 'TRUE'

group by creationtime;

The sole residual concern that I can identify is that it is conceivable that an individual who knows

the number of anesthetics they underwent in the period might identify their anesthetics, provided

the number is large (over 23) and unique.
§§§

§§§

 select NHI, count(distinct AnaestheticId) as Anesthetics from ANON group by NHI order by Anesthetics desc.

