Effects of volatile anesthetics on mortality and postoperative pulmonary and other complications in patients undergoing surgery: A systematic review and meta-analysis # **SUPPLEMENTAL DIGITAL CONTENT FILE 1** Christopher Uhlig*, M.D.^{1,2}, Thomas Bluth*, M.D.¹, Kristin Schwarz, M.Sc.³, Stefanie Deckert, M.Sc.³, Luise Heinrich, M.Sc.³, Stefan De Hert, M.D., Ph.D.⁴, Giovanni Landoni, M.D.⁵, Ary Serpa Neto, M.D., Ph.D.⁶, Marcus J. Schultz, M.D., Ph.D.⁷, Paolo Pelosi, M.D., F.E.R.S.⁸, Jochen Schmitt, M.D., Ph.D.³, Marcelo Gama de Abreu, M.D., M.Sc., Ph.D., D.E.S.A.¹ ¹Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany; ²Division of Health Care Sciences, Center for Clinical Research and Management Education, Dresden International University, Dresden, Germany; ³Center for Evidence-based Healthcare, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany; ⁴Department of Anesthesiology, Ghent University Hospital, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; ⁵Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, and Vita-Salute San Raffaele University, Milan, Italy; ⁶Department of Critical Care Medicine, Hospital Israelita Albert Einstein, and Program of Post-Graduation, Research and Innovation, Faculdade de Medicina do ABC, São Paulo, Brazil; ⁷Department of Intensive Care, Academic Medical Center, Amsterdam, The Netherlands; 8Department of Surgical Sciences and Integrated Diagnostics, IRCCS San Martino IST, University of Genoa, Genoa, Italy. *Drs. Uhlig and Bluth contributed equally to this manuscript. #### Correspondence and reprint requests to: Dr. Marcelo Gama de Abreu, Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Dresden, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany. Email: mgabreu@uniklinikum-dresden.de, Tel: +493514584488, Fax: +493514584336. **Table 1: PRISMA Checklist** | Section/Topic | # | Checklist item | Reported on page # | |---------------------------|----|---|--------------------| | TITLE | | | | | Title | 1 | Identify the report as a systematic review, meta-analysis, or both. | 1 | | ABSTRACT | | | | | Structured summary | 2 | Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number. | 3 | | INTRODUCTION | | | | | Rationale | 3 | Describe the rationale for the review in the context of what is already known. | 4 | | Objectives | 4 | Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS). | 4 | | METHODS | | | | | Protocol and registration | 5 | Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number. | 5 | | Eligibility criteria | 6 | Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale. | 5 | | Information sources | 7 | Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched. | 5 | | Search | 8 | Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated. | Table S2 | | Study selection | 9 | State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis). | 5-7 | | Data collection process | 10 | Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators. | 6-7 | | Data items | 11 | List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made. | 5-7 | **Table 1: PRISMA Checklist continued** | Section/Topic | # | Checklist item | Reported on page # | |------------------------------------|----|--|-------------------------------| | METHODS | | | | | Risk of bias in individual studies | 12 | Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis. | 6-7 | | Summary measures | 13 | State the principal summary measures (e.g., risk ratio, difference in means). | 6-7 | | Synthesis of results | 14 | Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I²) for each meta-analysis. | 7-8 | | Risk of bias across studies | 15 | Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies). | 6-7 | | Additional analyses | 16 | Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified. | 7-8 | | RESULTS | - | | | | Study selection | 17 | Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram. | 9 + Fig.1 | | Study characteristics | 18 | For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations. | 9-10, Table 1 and
Table S6 | | Risk of bias within studies | 19 | Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12). | 10, Fig.3 and Table S7 | | Results of individual studies | 20 | For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot. | 10-12, Fig. 4-9, S1-6 | | Synthesis of results | 21 | Present results of each meta-analysis done, including confidence intervals and measures of consistency. | 10-12, Fig. 4-9, S1-S6 | | Risk of bias across studies | 22 | Present results of any assessment of risk of bias across studies (see Item 15). | 10, Fig. 3 +S1 | | Additional analysis | 23 | Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]). | 10-12, Fig. 4-9, S2-S6 | | DISCUSSION | | | | | Summary of evidence | 24 | Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers). | 13 | | Limitations | 25 | Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias). | 16-17 | **Table 1: PRISMA Checklist continued** | Section/Topic | # | Checklist item | Reported on page # | |---------------|----|--|--------------------| | DISCUSSION | | | | | Conclusions | 26 | Provide a general interpretation of the results in the context of other evidence, and implications for future research. | 17 | | FUNDING | | | | | Funding | 27 | Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review. | 1 | From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. doi:10.1371/journal.pmed1000097 **Table 2: Search String** | MEDLINE via | 1 randomized controlled trial.pt. | |-------------|--| | Ovid | 2 controlled clinical trial.pt. | | | 3 randomized.ab. | | | 4 placebo.ab. | | | 5 clinical trials as topic.sh. | | | 6 randomly.ab. | | | 7 trial.ti. | | | 8 Or/1-7 | | | 9 exp animals/ not humans.sh. | | | 10 8 not 9 | | | 11 sevoflurane/ OR sevoflurane.mp. OR sevoran*.mp. | | | 12 desflurane/ OR desflurane.mp. OR supran*.mp. | | | 13 isoflurane/ OR isoflurane.mp. OR foren*.mp. | | | 14 inhalation anesthetic agent/ OR inhalation anesthetic.mp. | | | · | | | 15 (volatile anesthetics or gas anesthetics).mp. 16 or/11-15 | | | | | | 17 surgery/ OR surgery.mp. OR surgical*.mp. | | | 18 (operation or operative or postoperative).mp. | | | 19 interven*.mp. | | | 20 general anesthesia/ OR general anesthesia.mp. | | | 21 balanced anesthesia/ OR balanced anesthesia.mp. | | | 22 or/ 17-21 | | | 23 10 AND 16 AND 22 | | | 24 case report.tw. | | | 25 letter/ | | | 26 historical article/ | | | 27 or/ 24-26 | | | 28 23 not 27 | | CENTRAL via | 1 sevoflurane | | Cochrane | 2 desfluran* | | Library | 3 suprane | | | 4 isofluran* | | | 5 volatile anesthetic* | | | 6 gas anesthetic* | | | 7 inhalation anesthestic* | | | 8 (#1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7) | |
 9 surgery OR surgical* | | | 10 operation or operative or postoperative | | | 11 interven* | | | 12 general anesthesia | | | 13 balanced anesthesia | | | 14(#9 OR #10 OR #11 OR #12 OR #13) | | | 15 (#8 AND #14) | **Table 2: Search String continued** | EMBASE via | 1 Clinical trial/ | |----------------------|--| | Ovid | 2 Randomized controlled trial/ | | | 3 Randomization/ | | (SIGN search filter) | 4 Single blind procedure/ | | | 5 Double blind procedure/ | | | 6 Crossover procedure/ | | | 7 Placebo/ | | | 8 Randomi?ed controlled trial\$.tw. | | | 9 Rct.tw. | | | 10 Random allocation.tw. | | | 11 Randomly allocated.tw. | | | 12 Allocated randomly.tw. | | | 13 (allocated adj2 random).tw. | | | 14 Single blind\$.tw. | | | 15 Double blind\$.tw. | | | 16 (treble or triple) adj (blind\$).tw. | | | 17 Placebo\$.tw. | | | 18 Or/1-17 | | | 19 animal/ | | | 20 human/ | | | 21 19 not (19 and 20) | | | 22 18 not 21 | | | 23 sevoflurane/ OR sevoflurane.mp. OR sevoran*.mp. | | | 24 desflurane/ OR desflurane.mp. OR supran*.mp. | | | 25 isoflurane/ OR isoflurane.mp. OR foren*.mp. | | | 26 inhalation anesthetic agent/ OR inhalation anesthetic.mp. | | | 27 (volatile anesthetics or gas anesthetics).mp. | | | 28 or/23-27 | | | 29 surgery/ OR surgery.mp. OR surgical*.mp. | | | 30 (operation or operative or postoperative).mp. | | | 31 interven*.mp. | | | 32 general anesthesia/ OR general anesthesia.mp. | | | 33 balanced anesthesia/ OR balanced anesthesia.mp. | | | 34 or/ 29-33 | | | 35 22 AND 28 AND 34 | | | 36 case report.tw. | | | 37 letter/ | | | 38 historical article/
39 or/ 36-38 | | | | | | 40 35 not 39 | | | 41 limit 40 to exclude medline journals | ## **Reference List of Manual Search** - 1. Bignami E, Greco T, Barile L, Silvetti S, Nicolotti D, Fochi O, Cama E, Costagliola R, Landoni G, Biondi-Zoccai G, Zangrillo A: The effect of isoflurane on survival and myocardial infarction: a meta-analysis of randomized controlled studies. J Cardiothorac Vasc Anesth 2013; 27: 50-8 - 2. de Oliveira GS,Jr, Girao W, Fitzgerald PC, McCarthy RJ: The effect of sevoflurane versus desflurane on the incidence of upper respiratory morbidity in patients undergoing general anesthesia with a Laryngeal Mask Airway: a meta-analysis of randomized controlled trials. J Clin Anesth 2013; 25: 452-8 - 3. Ebert TJ, Robinson BJ, Uhrich TD, Mackenthun A, Pichotta PJ: Recovery from sevoflurane anesthesia: a comparison to isoflurane and propofol anesthesia. Anesthesiology 1998; 89: 1524-31 - 4. Joo HS, Perks WJ: Sevoflurane versus propofol for anesthetic induction: a meta-analysis. Anesth Analg 2000; 91: 213-9 - 5. Landoni G, Fochi O, Bignami E, Calabro MG, D'Arpa MC, Moizo E, Mizzi A, Pappalardo F, Morelli A, Zangrillo A: Cardiac protection by volatile anesthetics in non-cardiac surgery? A meta-analysis of randomized controlled studies on clinically relevant endpoints. HSR Proc Intensive Care Cardiovasc Anesth 2009; 1: 34-43 - 6. Landoni G, Greco T, Biondi-Zoccai G, Nigro Neto C, Febres D, Pintaudi M, Pasin L, Cabrini L, Finco G, Zangrillo A: Anaesthetic drugs and survival: a Bayesian network meta-analysis of randomized trials in cardiac surgery. Br J Anaesth 2013; 111: 886-96 - 7. Modolo NS, Modolo MP, Marton MA, Volpato E, Monteiro Arantes V, do Nascimento Junior P, El Dib RP: Intravenous versus inhalation anaesthesia for one-lung ventilation. Cochrane Database Syst Rev 2013; 7: CD006313 - 8. Schifilliti D, Grasso G, Conti A, Fodale V: Anaesthetic-related neuroprotection: intravenous or inhalational agents? CNS Drugs 2010; 24: 893-907 - 9. Yu CH, Beattie WS: The effects of volatile anesthetics on cardiac ischemic complications and mortality in CABG: a meta-analysis. Can J Anaesth 2006; 53: 906-18 - 10. Zhou C, Liu Y, Yao Y, Zhou S, Fang N, Wang W, Li L: Beta-Blockers and Volatile Anesthetics may Attenuate Cardioprotection by Remote Preconditioning in Adult Cardiac Surgery: a Meta-Analysis of 15 Randomized Trials. J Cardiothorac Vasc Anesth 2013; 27: 305-11 # Table 3: Definitions of pulmonary postoperative complications (PPCs) PPCs were defined according to the definition of the authors of the respective manuscript or the following: ## Hypoxemia¹ $PaO_2 < 60 \text{ mmHg or } SpO_2 < 90\% \text{ in room air, but responding to supplemental oxygen (excluding hypoventilation) or$ Need for non–invasive or invasive mechanical ventilation or a PaO₂ < 60 mmHg or SpO₂ < 90% despite supplemental oxygen (excluding hypoventilation) #### Bronchospasm¹ Defined as newly detected expiratory wheezing treated with bronchodilators #### Suspected pulmonary infection¹ In case patient receives antibiotics and meets at least one of the following criteria: new or changed sputum, new or changed lung opacities on chest X–ray when clinically indicated, timpanic temperature > $38\cdot3^{\circ}$ C, WBC count > 12×109 L #### Pulmonary infiltrate¹ Chest X-ray demonstrating monolateral or bilateral infiltrate # Aspiration pneumonitis¹ Defined as respiratory failure after the inhalation of regurgitated gastric contents # Acute Respiratory Distress Syndrome 1,2,3 By the consensus criteria or Berlin definition (only in case of non-invasive or invasive mechanical ventilation) #### Atelectasis¹ Suggested by lung opacification with shift of the mediastinum, hilum, or hemidiaphragm towards the affected area, and compensatory overinflation in the adjacent nonatelectatic lung #### Pleural effusion¹ Chest X–ray demonstrating blunting of the costophrenic angle, loss of the sharp silhouette of the ipsilateral hemidiaphragm in upright position, evidence of displacement of adjacent anatomical structures, or (in supine position) a hazy opacity in one hemi–thorax with preserved vascular shadows ## Pulmonary oedema caused by cardiac failure¹ Defined as clinical signs of congestion, including dyspnea, edema, rales and jugular venous distention, with the chest X–ray demonstrating increase in vascular markings and diffuse alveolar interstitial infiltrates #### Pneumothorax¹ Defined as air in the pleural space with no vascular bed surrounding the visceral pleura # Óther PPCs4,5 Such as prolonged mechanical ventilation (depending on the usual time of mechanical ventilation per study cohort, eg. >24 hours), reintubation PaO₂: arterial partial oxygen pressure, SpO₂: pulseoxymetric measured oxygen saturation ### References Table 4: - 1. PROVE Network Investigators for the Clinical Trial Network of the European Society of Anaesthesiology, Hemmes SN, Gama de Abreu M, Pelosi P, Schultz MJ: High versus low positive end-expiratory pressure during general anaesthesia for open abdominal surgery (PROVHILO trial): a multicentre randomised controlled trial. Lancet 2014; 384: 495-503 - Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, Legall JR, Morris A, Spragg R: The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 1994: 149: 818-24 - 3. ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS: Acute respiratory distress syndrome: the Berlin Definition. JAMA 2012; 307: 2526-33 - 4. De Conno E, Steurer MP, Wittlinger M, Zalunardo MP, Weder W, Schneiter D, Schimmer RC, Klaghofer R, Neff TA, Schmid ER, Spahn DR, Z'graggen BR, Urner M, Beck-Schimmer B: - Anesthetic-induced improvement of the inflammatory response to one-lung ventilation. Anesthesiology 2009; 110: 1316-26 - 5. Royse CF, Andrews DT, Newman SN, Stygall J, Williams Z, Pang J, Royse AG: The influence of propofol or desflurane on postoperative cognitive dysfunction in patients undergoing coronary artery bypass surgery. Anaesthesia 2011; 66: 455-64 ## Table 4: Definitions of other postoperative complications Other postoperative complications were defined according to the definition of the authors of the respective manuscript or the following: # Acute myocardial infarction 1,2 Detection of rise and/or fall of cardiac markers (preferably troponin) with at least one value above the 99th percentile of the upper reference limit, together with: symptoms of ischemia, ECG changes indicative of new ischemia, development of pathological Q-waves, or imaging evidence of new loss of viable myocardium or new regional wall motion abnormality, or: sudden unexpected cardiac death, involving cardiac arrest with symptoms suggestive of cardiac ischemia (but death occurring before the appearance of cardiac markers in blood) #### Overall cardiac events^{3,4} Including acute myocardial infarction, congestive herat failure, arrhythmia requiring hospitalization, postoperative need for intraaortic balloon pump or other cardiac events as defined by the authors of the respective manuscript # SIRS, sepsis, severe sepsis and septic shock⁵ according to consensus definition #### Extrapulmonary infection¹ Wound infection or any other infection ### Neurological complications¹ Coma (Glasgow Coma Score < 8 in the absence of therapeutic coma or sedation) or stroke # Acute renal failure (ARF)^{1,6} Renal failure documented as follows: Risk: increased creatinine x1.5 or glomerular filtration rate (GFR) decrease > 25% or urine output (UO) < 0.5 ml/kg/h x 6 h; Injury: increased creatinine x2 or GFR decrease > 50% or UO < 0.5 ml/kg/h x 12 hr; Failure: increase creatinine x3 or GFR decrease > 75% or UO < 0.3 ml/kg/h x 24 hr or anuria x 12 hrs; Loss: persistent ARF = complete loss of kidney function > 4 weeks # Disseminated intravascular coagulation (DIC)^{1,7} DIC score documented as follows: Platelet count < 50 (2 points), < 100 (1 point), or \geq 100 (0 points); D-dimer > 4 µg/ml (2 points), > 0·39 µg/ml (1 point) or \leq 0·39 µg/ml (0 points); Prothrombin time > 20·5 seconds (2 points), > 17·5 seconds (1 point) or \leq 17·5 seconds (0 points); if \geq 5 points: overt DIC #### Hepatic failure¹ Serum bilirubin level $> 34 \mu mol/L$ with
elevation of the transaminase and lactic dehydrogenase levels above twice normal values ## Gastro-intestinal failure^{1,8} Gastro-intestinal bleeding Gastro–intestinal failure (GIF) score documented as follows: 0 = normal gastrointestinal function; 1 = enteral feeding with under 50% of calculated needs or no feeding 3 days after abdominal surgery; 2 = food intolerance (FI) or intra–abdominal hypertension (IAH); 3 = FI and IAH; and 4 = abdominal compartment syndrome (ACS) ECG: electrocardiography, GIF: gastro-intestinal failure, FI: food intolerance, IAH: intra-abdominal hypertension, ACS: abdominal compartment syndrome, GFR: glomerular filtration rate, UO: urine output #### References Table 5: - 1. PROVE Network Investigators for the Clinical Trial Network of the European Society of Anaesthesiology, Hemmes SN, Gama de Abreu M, Pelosi P, Schultz MJ: High versus low positive end-expiratory pressure during general anaesthesia for open abdominal surgery (PROVHILO trial): a multicentre randomised controlled trial. Lancet 2014; 384: 495-503 - 2. Thygesen K, Alpert JS, White HD, Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction, Jaffe AS, Apple FS, Galvani M, Katus HA, Newby LK, Ravkilde J, Chaitman B, Clemmensen PM, Dellborg M, Hod H, Porela P, Underwood R, Bax JJ, Beller GA, Bonow R, Van der Wall EE, Bassand JP, Wijns W, Ferguson TB, Steg PG, Uretsky BF, Williams DO, Armstrong PW, Antman EM, Fox KA, Hamm CW, Ohman EM, Simoons ML, Poole-Wilson PA, Gurfinkel EP, Lopez-Sendon JL, Pais P, Mendis S, Zhu JR, Wallentin LC, Fernandez-Aviles F, Fox KM, Parkhomenko AN, Priori SG, Tendera M, Voipio-Pulkki LM, Vahanian A, Camm AJ, De Caterina R, Dean V, Dickstein K, Filippatos G, Funck-Brentano C, Hellemans I, Kristensen SD, McGregor K, Sechtem U, Silber S, Tendera M, Widimsky P, Zamorano JL, Morais J, Brener S, Harrington R, Morrow D, Lim M, Martinez-Rios MA, Steinhubl S, Levine GN, Gibler WB, Goff D, Tubaro M, Dudek D, Al-Attar N: Universal definition of myocardial infarction. Circulation 2007; 116: 2634-53 - 3. Lurati Buse GA, Schumacher P, Seeberger E, Studer W, Schuman RM, Fassl J, Kasper J, Filipovic M, Bolliger D, Seeberger MD: Response to letters regarding article, "Randomized comparison of sevoflurane versus propofol to reduce perioperative myocardial ischemia in patients undergoing noncardiac surgery". Circulation 2013; 127: e878-9 - Garcia C, Julier K, Bestmann L, Zollinger A, von Segesser LK, Pasch T, Spahn DR, Zaugg M: Preconditioning with sevoflurane decreases PECAM-1 expression and improves one-year cardiovascular outcome in coronary artery bypass graft surgery. Br J Anaesth 2005; 94: 159-65 - 5. Bone RC: Toward an epidemiology and natural history of SIRS (systemic inflammatory response syndrome). JAMA 1992; 268: 3452-3455 - Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P, Acute Dialysis Quality Initiative workgroup: Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 2004; 8: R204-12 - Levi M, Toh CH, Thachil J, Watson HG: Guidelines for the diagnosis and management of disseminated intravascular coagulation. British Committee for Standards in Haematology. Br J Haematol 2009; 145: 24-33 Levi M, Toh CH, Thachil J, Watson HG. Guidelines for the diagnosis and management of disseminated intravascular coagulation. British Committee for Standards in Haematology. Br J Haematol 2009; 145: 24-33. - 8. Reintam A, Parm P, Kitus R, Starkopf J, Kern H: Gastrointestinal failure score in critically ill patients: a prospective observational study. Crit Care 2008; 12: R90 Table 5: Reference list of included trials | Author | Reference | |-------------------|---| | 1. Alvarez 1990 | Alvarez J, Casas JI, Villar Landeira JM: Isoflurane in pulmonary hypertension and failure of the right ventricle. Rev Esp Anestesiol Reanim 1990; 37: 127-36 | | 2. Amr 2010 | Amr YM, Yassin IM: Cardiac protection during on-pump coronary artery bypass grafting: ischemic versus isoflurane preconditioning. Semin Cardiothorac Vasc Anesth 2010; 14: 205-11 | | 3. Baki 2013 | Baki ED, Aldemir M, Kokulu S, Koca HB, Ela Y, Sivaci RG, Ozturk NK, Emmiler M, Adali F, Uzel H: Comparison of the effects of desflurane and propofol anesthesia on the inflammatory response and s100beta protein during coronary artery bypass grafting. Inflammation 2013; 36: 1327-33 | | 4. Ballester 2011 | Ballester M, Llorens J, Garcia-de-la-Asuncion J, Perez-Griera J, Tebar E, Martinez-Leon J, Belda J, Juez M: Myocardial oxidative stress protection by sevoflurane vs. propofol: a randomised controlled study in patients undergoing off-pump coronary artery bypass graft surgery. Eur J Anaesthesiol 2011; 28: 874-81 | | 5. Beck-S. 2008 | Beck-Schimmer B, Breitenstein S, Urech S, De Conno E, Wittlinger M, Puhan M, Jochum W, Spahn DR, Graf R, Clavien PA: A randomized controlled trial on pharmacological preconditioning in liver surgery using a volatile anesthetic. Ann Surg 2008; 248: 909-18 | | 6. Beck-S. 2012 | Beck-Schimmer B, Breitenstein S, Bonvini JM, Lesurtel M, Ganter M, Weber A, Puhan MA, Clavien PA: Protection of pharmacological postconditioning in liver surgery: results of a prospective randomized controlled trial. Ann Surg 2012; 256: 837,44; discission 844-5 | | 7. Bein 2005 | Bein B, Renner J, Caliebe D, Scholz J, Paris A, Fraund S, Zaehle W, Tonner PH: Sevoflurane but not propofol preserves myocardial function during minimally invasive direct coronary artery bypass surgery. Anesth Analg 2005; 100: 610,6, table of contents | | 8. Bharti 2008 | Bharti N, Chari P, Thingnam SS, Arora S: Comparison of Haemodynamic and Cardiovascular Effects of VIMA with Sevoflurane Versus TIVA with Propofol in Patients Undergoing Coronary Artery Bypass Surgery. Indian J Anaesth 2008; 52: 805-12 | Table 5: Reference list of included trials continued | Author | Reference | |------------------------|--| | 9. Biboulet 2012 | Biboulet P, Jourdan A, Van Haevre V, Morau D, Bernard N, Bringuier S, Capdevila X: Hemodynamic profile of target-controlled spinal anesthesia compared with 2 target-controlled general anesthesia techniques in elderly patients with cardiac comorbidities. Reg Anesth Pain Med 2012; 37: 433-40 | | 10. Bignami 2012 | Bignami E, Landoni G, Gerli C, Testa V, Mizzi A, Fano G, Nuzzi M, Franco A, Zangrillo A: Sevoflurane vs. propofol in patients with coronary disease undergoing mitral surgery: a randomised study. Acta Anaesthesiol Scand 2012; 56: 482-90 | | 11. Braz 2013 | Braz MG, Braz LG, Braz JR, Pierine DT, Correa CR, Ferreira AL, Carvalho LR, Yeum KJ, Salvadori DM: Comparison of oxidative stress in ASA physical status I patients scheduled for minimally invasive surgery under balanced or intravenous anesthesia. Minerva Anestesiol 2013; 79: 1030-8 | | 12. Cavalca 2008 | Cavalca V, Colli S, Veglia F, Eligini S, Zingaro L, Squellerio I, Rondello N, Cighetti G, Tremoli E, Sisillo E: Anesthetic propofol enhances plasma gamma-tocopherol levels in patients undergoing cardiac surgery. Anesthesiology 2008; 108: 988-97 | | 13. Conno 2009 | De Conno E, Steurer MP, Wittlinger M, Zalunardo MP, Weder W, Schneiter D, Schimmer RC, Klaghofer R, Neff TA, Schmid ER, Spahn DR, Z'graggen BR, Urner M, Beck-Schimmer B: Anesthetic-induced improvement of the inflammatory response to one-lung ventilation. Anesthesiology 2009; 110: 1316-26 | | 14. Conzen 2003 | Conzen PF, Fischer S, Detter C, Peter K: Sevoflurane provides greater protection of the myocardium than propofol in patients undergoing off-pump coronary artery bypass surgery. Anesthesiology 2003; 99: 826-33 | | 15. Cromheecke
2006 | Cromheecke S, Pepermans V, Hendrickx E, Lorsomradee S, Ten Broecke PW, Stockman BA, Rodrigus IE, De Hert SG: Cardioprotective properties of sevoflurane in patients undergoing aortic valve replacement with cardiopulmonary bypass. Anesth Analg 2006; 103: 289,96, table of contents | | 16. De Hert 2002 | De Hert SG, ten Broecke PW, Mertens E, Van Sommeren EW, De Blier IG, Stockman BA, Rodrigus IE: Sevoflurane but not propofol preserves myocardial function in coronary surgery patients. Anesthesiology 2002; 97: 42-9 | Table 5: Reference list of included trials continued | Author | Reference | |---------------------|--| | 17. De Hert 2003 | De Hert SG, Cromheecke S, ten Broecke PW, Mertens E, De Blier IG, Stockman BA, Rodrigus IE, Van der Linden PJ: Effects of propofol, desflurane, and sevoflurane on recovery of myocardial function after coronary surgery in elderly high-risk patients. Anesthesiology 2003; 99: 314-23 | | 18. De Hert 2004 | De Hert SG, Van der Linden PJ, Cromheecke S, Meeus R, Nelis A, Van Reeth V, ten Broecke PW, De Blier IG, Stockman BA, Rodrigus IE: Cardioprotective properties of sevoflurane in patients undergoing coronary surgery with cardiopulmonary bypass are related to the modalities of its administration. Anesthesiology 2004; 101: 299-310 | | 19. De Hert II 2004 | De Hert SG, Van der Linden PJ,
Cromheecke S, Meeus R, ten Broecke PW, De Blier IG, Stockman BA, Rodrigus IE: Choice of primary anesthetic regimen can influence intensive care unit length of stay after coronary surgery with cardiopulmonary bypass. Anesthesiology 2004; 101: 9-20 | | 20. De Hert 2009 | De Hert S, Vlasselaers D, Barbe R, Ory JP, Dekegel D, Donnadonni R, Demeere JL, Mulier J, Wouters P: A comparison of volatile and non volatile agents for cardioprotection during on-pump coronary surgery. Anaesthesia 2009; 64: 953-60 | | 21. Deegan 2010 | Deegan CA, Murray D, Doran P, Moriarty DC, Sessler DI, Mascha E, Kavanagh BP, Buggy DJ: Anesthetic technique and the cytokine and matrix metalloproteinase response to primary breast cancer surgery. Reg Anesth Pain Med 2010; 35: 490-5 | | 22. Eremeev 2011 | Eremeev AV, Kirov MI: Comparison of sevoflurane and propofol anesthesia for aortocoronary bypass surgery without artificial circulation. Anesteziol Reanimatol 2011; (3): 4-8 | | 23. Flier 2010 | Flier S, Post J, Concepcion AN, Kappen TH, Kalkman CJ, Buhre WF: Influence of propofol-opioid vs isoflurane-opioid anaesthesia on postoperative troponin release in patients undergoing coronary artery bypass grafting. Br J Anaesth 2010; 105: 122-30 | | 24. Fräßdorf 2009 | Frassdorf J, Borowski A, Ebel D, Feindt P, Hermes M, Meemann T, Weber R, Mullenheim J, Weber NC, Preckel B, Schlack W: Impact of preconditioning protocol on anesthetic-induced cardioprotection in patients having coronary artery bypass surgery. J Thorac Cardiovasc Surg 2009; 137: 1436,42, 1442.e1-2 | Table 5: Reference list of included trials continued | Author | Reference | |------------------------|--| | 25. Fudickar 2014 | Fudickar A, Kunath S, Voss D, Siggelkow M, Cavus E, Steinfath M, Bein B: Effect of ischemic and pharmacological preconditioning of lower limb muscle tissue on tissue oxygenation measured by near-infrared spectroscopya pilot study. BMC Anesthesiol 2014; 14: 54,2253-14-54. eCollection 2014 | | 26. Garcia 2005 | Garcia C, Julier K, Bestmann L, Zollinger A, von Segesser LK, Pasch T, Spahn DR, Zaugg M: Preconditioning with sevoflurane decreases PECAM-1 expression and improves one-year cardiovascular outcome in coronary artery bypass graft surgery. Br J Anaesth 2005; 94: 159-65 | | 27. Gaszynski 2011 | Gaszynski T: The effect of pneumoperitoneum on haemodynamic parameters in morbidly obese patients. Anestezjol Intens Ter 2011; 43: 148-52 | | 28. Godet 1990 | Godet G, Bertrand M, Coriat P, Kieffer E, Mouren S, Viars P: Comparison of isoflurane with sodium nitroprusside for controlling hypertension during thoracic aortic cross-clamping. J Cardiothorac Anesth 1990; 4: 177-84 | | 29. Gravel 1999 | Gravel NR, Searle NR, Taillefer J, Carrier M, Roy M, Gagnon L: Comparison of the hemodynamic effects of sevoflurane anesthesia induction and maintenance vs TIVA in CABG surgery. Can J Anaesth 1999; 46: 240-6 | | 30. Guarracino
2006 | Guarracino F, Landoni G, Tritapepe L, Pompei F, Leoni A, Aletti G, Scandroglio AM, Maselli D, De Luca M, Marchetti C, Crescenzi G, Zangrillo A: Myocardial damage prevented by volatile anesthetics: a multicenter randomized controlled study. J Cardiothorac Vasc Anesth 2006; 20: 477-83 | | 31. Helman 1992 | Helman JD, Leung JM, Bellows WH, Pineda N, Roach GW, Reeves JD,3rd, Howse J, McEnany MT, Mangano DT: The risk of myocardial ischemia in patients receiving desflurane versus sufentanil anesthesia for coronary artery bypass graft surgery. The S.P.I. Research Group. Anesthesiology 1992; 77: 47-62 | | 32. Howie 1996 | Howie MB, Black HA, Romanelli VA, Zvara DA, Myerowitz PD, McSweeney TD: A comparison of isoflurane versus fentanyl as primary anesthetics for mitral valve surgery. Anesth Analg 1996; 83: 941-8 | Table 5: Reference list of included trials continued | Author | Reference | |------------------------|--| | 33. Huang 2011 | Huang Z, Zhong X, Irwin MG, Ji S, Wong GT, Liu Y, Xia ZY, Finegan BA, Xia Z: Synergy of isoflurane preconditioning and propofol postconditioning reduces myocardial reperfusion injury in patients. Clin Sci (Lond) 2011; 121: 57-69 | | 34. Jovic 2012 | Jovic M, Stancic A, Nenadic D, Cekic O, Nezic D, Milojevic P, Micovic S, Buzadzic B, Korac A, Otasevic V, Jankovic A, Vucetic M, Velickovic K, Golic I, Korac B: Mitochondrial molecular basis of sevoflurane and propofol cardioprotection in patients undergoing aortic valve replacement with cardiopulmonary bypass. Cell Physiol Biochem 2012; 29: 131-42 | | 35. Kendall 2004 | Kendall JB, Russell GN, Scawn ND, Akrofi M, Cowan CM, Fox MA: A prospective, randomised, single-blind pilot study to determine the effect of anaesthetic technique on troponin T release after off-pump coronary artery surgery. Anaesthesia 2004; 59: 545-9 | | 36. Kirov 2007 | Kirov MY, Lenkin AI, Kuzkov VV, Suborov EV, Slastilin VY, Borodin VV, Chernov II, Shonbin AN, Bjertnaes LJ: Single transpulmonary thermodilution in off-pump coronary artery bypass grafting: haemodynamic changes and effects of different anaesthetic techniques. Acta Anaesthesiol Scand 2007; 51: 426-33 | | 37. Ko 2008 | Ko JS, Gwak MS, Choi SJ, Kim GS, Kim JA, Yang M, Lee SM, Cho HS, Chung IS, Kim MH: The effects of desflurane and propofol-remifentanil on postoperative hepatic and renal functions after right hepatectomy in liver donors. Liver Transpl 2008; 14: 1150-8 | | 38. Ko 2010 | Ko JS, Gwak MS, Choi SJ, Yang M, Kim MJ, Lee JY, Kim GS, Kwon CH, Joh JW: The effects of desflurane and sevoflurane on hepatic and renal functions after right hepatectomy in living donors*. Transpl Int 2010; 23: 736-44 | | 39. Kortekaas 2014 | Kortekaas KA, van der Baan A, Aarts LP, Palmen M, Cobbaert CM, Verhagen JC, Engbers FH, Klautz RJ, Lindeman JH: Cardiospecific sevoflurane treatment quenches inflammation but does not attenuate myocardial cell damage markers: a proof-of-concept study in patients undergoing mitral valve repair. Br J Anaesth 2014; 112: 1005-14 | | 40. Kottenberg
2012 | Kottenberg E, Thielmann M, Bergmann L, Heine T, Jakob H, Heusch G, Peters J: Protection by remote ischemic preconditioning during coronary artery bypass graft surgery with isoflurane but not propofol a clinical trial. Acta Anaesthesiol Scand 2012; 56: 30-8 | Table 5: Reference list of included trials continued | Author | Reference | |-------------------------|---| | 41. Landoni 2007 | Landoni G, Calabro MG, Marchetti C, Bignami E, Scandroglio AM, Dedola E, De Luca M, Tritapepe L, Crescenzi G, Zangrillo A: Desflurane versus propofol in patients undergoing mitral valve surgery. J Cardiothorac Vasc Anesth 2007; 21: 672-7 | | 42. Lee, MC. 2006 | Lee MC, Chen CH, Kuo MC, Kang PL, Lo A, Liu K: Isoflurane preconditioning-induced cardio-protection in patients undergoing coronary artery bypass grafting. Eur J Anaesthesiol 2006; 23: 841-7 | | 43. Lee, J. 2012 | Lee JJ, Kim GH, Kim JA, Yang M, Ahn HJ, Sim WS, Park KJ, Jun BH: Comparison of pulmonary morbidity using sevoflurane or propofol-remifentanil anesthesia in an Ivor Lewis operation. J Cardiothorac Vasc Anesth 2012; 26: 857-62 | | 44. Leung 1991 | Leung JM, Goehner P, O'Kelly BF, Hollenberg M, Pineda N, Cason BA, Mangano DT: Isoflurane anesthesia and myocardial ischemia: comparative risk versus sufentanil anesthesia in patients undergoing coronary artery bypass graft surgery. The SPI (Study of Perioperative Ischemia) Research Group. Anesthesiology 1991; 74: 838-47 | | 45. Lindholm 2013 | Lindholm EE, Aune E, Noren CB, Seljeflot I, Hayes T, Otterstad JE, Kirkeboen KA: The anesthesia in abdominal aortic surgery (ABSENT) study: a prospective, randomized, controlled trial comparing troponin T release with fentanyl-sevoflurane and propofol-remifentanil anesthesia in major vascular surgery. Anesthesiology 2013; 119: 802-12 | | 46. Lorsomradee
2006 | Lorsomradee S, Cromheecke S, Lorsomradee S, De Hert SG: Effects of sevoflurane on biomechanical markers of hepatic and renal dysfunction after coronary artery surgery. J Cardiothorac Vasc Anesth 2006; 20: 684-90 | | 47. Lurati Buse
2012 | Lurati Buse GA, Schumacher P, Seeberger E, Studer W, Schuman RM, Fassl J, Kasper J, Filipovic M, Bolliger D, Seeberger MD: Randomized comparison of sevoflurane versus propofol to reduce perioperative myocardial ischemia in patients undergoing noncardiac surgery. Circulation 2012; 126: 2696-704 | | 48. Mahmoud 2011 | Mahmoud K, Ammar A: Immunomodulatory Effects of Anesthetics during Thoracic Surgery. Anesthesiol Res Pract 2011; 2011: 317410 | Table 5: Reference list of included trials continued | Author | Reference | |------------------|---| | 49. Mazoti 2013 | Mazoti MA, Braz MG, de Assis Golim M, Braz LG, Dias NH, Salvadori DM, Braz
JR, Fecchio D: Comparison of inflammatory cytokine profiles in plasma of patients undergoing otorhinological surgery with propofol or isoflurane anesthesia. Inflamm Res 2013; 62: 879-85 | | 50. Meco 2007 | Meco M, Cirri S, Gallazzi C, Magnani G, Cosseta D: Desflurane preconditioning in coronary artery bypass graft surgery: a double-blinded, randomised and placebo-controlled study. Eur J Cardiothorac Surg 2007; 32: 319-25 | | 51. Ndoko 2007 | Ndoko SK, Tual L, Ait Mamar B, Sauvat S, Jabre P, Zakhouri M, Rosanval O, Abdi M, Kirsch M, Pouzet B, Loisance D, Dhonneur G: Isoflurane, 0.5 minimum alveolar concentration administered through the precardiopulmonary bypass period, reduces postoperative dobutamine requirements of cardiac surgery patients: a randomized study. J Cardiothorac Vasc Anesth 2007; 21: 683-9 | | 52. Parsons 1994 | Parsons RS, Jones RM, Wrigley SR, MacLeod KG, Platt MW: Comparison of desflurane and fentanyl-based anaesthetic techniques for coronary artery bypass surgery. Br J Anaesth 1994; 72: 430-8 | | 53. Piriou 2007 | Piriou V, Mantz J, Goldfarb G, Kitakaze M, Chiari P, Paquin S, Cornu C, Lecharny JB, Aussage P, Vicaut E, Pons A, Lehot JJ: Sevoflurane preconditioning at 1 MAC only provides limited protection in patients undergoing coronary artery bypass surgery: a randomized bi-centre trial. Br J Anaesth 2007; 99: 624-31 | | 54. Rex 2009 | Rex C, Wagner S, Spies C, Scholz J, Rietbergen H, Heeringa M, Wulf H: Reversal of neuromuscular blockade by sugammadex after continuous infusion of rocuronium in patients randomized to sevoflurane or propofol maintenance anesthesia. Anesthesiology 2009; 111: 30-5 | | 55. Royse 2011 | Royse CF, Andrews DT, Newman SN, Stygall J, Williams Z, Pang J, Royse AG: The influence of propofol or desflurane on postoperative cognitive dysfunction in patients undergoing coronary artery bypass surgery. Anaesthesia 2011; 66: 455-64 | Table 5: Reference list of included trials continued | Author | Reference | |-----------------------|---| | 56. Schoen 2011 | Schoen J, Husemann L, Tiemeyer C, Lueloh A, Sedemund-Adib B, Berger KU, Hueppe M, Heringlake M: Cognitive function after sevoflurane- vs propofol-based anaesthesia for on-pump cardiac surgery: a randomized controlled trial. Br J Anaesth 2011; 106: 840-50 | | 57. Searle 1996 | Searle NR, Martineau RJ, Conzen P, al-Hasani A, Mark L, Ebert T, Muzi M, Hodgins LR: Comparison of sevoflurane/fentanyl and isoflurane/fentanyl during elective coronary artery bypass surgery. Sevoflurane Venture Group. Can J Anaesth 1996; 43: 890-9 | | 58. Slogoff 1989 | Slogoff S, Keats AS: Randomized trial of primary anesthetic agents on outcome of coronary artery bypass operations. Anesthesiology 1989; 70: 179-88 | | 59. Song, JC.
2010 | Song JC, Sun YM, Yang LQ, Zhang MZ, Lu ZJ, Yu WF: A comparison of liver function after hepatectomy with inflow occlusion between sevoflurane and propofol anesthesia. Anesth Analg 2010; 111: 1036-41 | | 60. Song, JG.
2012 | Song JG, Shin JW, Lee EH, Choi DK, Bang JY, Chin JH, Choi IC: Incidence of post-thoracotomy pain: a comparison between total intravenous anaesthesia and inhalation anaesthesia. Eur J Cardiothorac Surg 2012; 41: 1078-82 | | 61. Soro 2012 | Soro M, Gallego L, Silva V, Ballester MT, Llorens J, Alvarino A, Garcia-Perez ML, Pastor E, Aguilar G, Marti FJ, Carratala A, Belda FJ: Cardioprotective effect of sevoflurane and propofol during anaesthesia and the postoperative period in coronary bypass graft surgery: a double-blind randomised study. Eur J Anaesthesiol 2012; 29: 561-9 | | 62. Story 2001 | Story DA, Poustie S, Liu G, McNicol PL: Changes in plasma creatinine concentration after cardiac anesthesia with isoflurane, propofol, or sevoflurane: a randomized clinical trial. Anesthesiology 2001; 95: 842-8 | | 63. Thomson 1991 | Thomson IR, Bowering JB, Hudson RJ, Frais MA, Rosenbloom M: A comparison of desflurane and isoflurane in patients undergoing coronary artery surgery. Anesthesiology 1991; 75: 776-81 | Table 5: Reference list of included trials continued | Author | Reference | |--------------------|---| | 64. Tritapepe 2007 | Tritapepe L, Landoni G, Guarracino F, Pompei F, Crivellari M, Maselli D, De Luca M, Fochi O, D'Avolio S, Bignami E, Calabro MG, Zangrillo A: Cardiac protection by volatile anaesthetics: a multicentre randomized controlled study in patients undergoing coronary artery bypass grafting with cardiopulmonary bypass. Eur J Anaesthesiol 2007; 24: 323-31 | | 65. Xu 2014 | Xu WY, Wang N, Xu HT, Yuan HB, Sun HJ, Dun CL, Zhou SQ, Zou Z, Shi XY: Effects of sevoflurane and propofol on right ventricular function and pulmonary circulation in patients undergone esophagectomy. Int J Clin Exp Pathol 2013; 7: 272-9 | | 66. Yildirim 2009 | Yildirim V, Doganci S, Aydin A, Bolcal C, Demirkilic U, Cosar A: Cardioprotective effects of sevoflurane, isoflurane, and propofol in coronary surgery patients: a randomized controlled study. Heart Surg Forum 2009; 12: E1-9 | | 67. Yoo 2014 | Yoo YC, Shim JK, Song Y, Yang SY, Kwak YL: Anesthetics influence the incidence of acute kidney injury following valvular heart surgery. Kidney Int 2014; 86: 414-22 | | 68. Zangrillo 2011 | Zangrillo A, Testa V, Aldrovandi V, Tuoro A, Casiraghi G, Cavenago F, Messina M, Bignami E, Landoni G: Volatile agents for cardiac protection in noncardiac surgery: a randomized controlled study. J Cardiothorac Vasc Anesth 2011; 25: 902-7 | # Detailed information regarding number of patients enrolled in the manuscripts reporting pospoperative pulmonary and other complications Beside mortality, 26 randomized controlled trials (RCTs) reported PPCs including 2,306 patients comparing in 25 trials (2,232 patients) volatile anesthetics (sevoflurane n=708, desflurane n=111, isoflurane n=322) to TIVA (n=1,091) and in one trial (74 patients; included in network meta-analysis) sevoflurane (n=37) vs. desflurane (n=37). Out of those trials 15 RCTs recruited 1,630 patients undergoing cardiac surgery (sevoflurane n=475, desflurane n=287, isoflurane n=61, TIVA n=807) and 11 RCTs with 602 patients undergoing non-cardiac surgery (sevoflurane n=233, desflurane n=35, isoflurane n=50, TIVA n=284). Another 47 RCTs (5,376 patients) described other postoperative comlications in addition to mortality. Forty-four trials (5,169 patients) compared volatile anesthetics (total n=2,746, sevoflurane n=1,506, desflurane n=688, isoflurane n=552) to TIVA (n=2,423) and three trials investigated VOLs (total n=207, sevoflurane n=177, desflurane n=58, isoflurane n=153) without a TIVA group (included in network meta-analysis). Cardiac surgical patients were recruited in 32 trials (4,038 patients) comparing volatile anesthetics (total n=2,173, sevoflurane n=1,018, desflurane n=628, isoflurane n=527) to TIVA (n=1,865). Twelve RCTs (1,131 patients) with TIVA control group recruited patients from surgical fields other than cardiac surgery (sevoflurane n=488, desflurane n=60, isoflurane n=25, TIVA n=558). **Table 6: Detailed trial information** | Publi | ication o | details | Po | pulation | Interven | tion | Outcome | | | |----------------------|-----------|---------|--|--|---|--|-------------|--|--| | Author* | Year | Centers | Inclusion criteria | Exclusion criteria | Treatment (VOL) | Control (TIVA or VOL) | Primary | Secondary | | | Alvarez ¹ | 1990 | single | mitral valve surgery with
non-ischemic etiology,
mean pulmonary artery
pressure > 30 mmHg | aortic valve pathology | Premedication: clorazepate, Induction: diazepam, fentanyl, pancuronium, Maintenance: isoflurane, fentanyl (n=13) | Premedication: clorazepate, Induction: diazepam, fentanyl, pancuronium, Maintenance: high dose fentanyl (n=17) | not defined | hemodynamic
parameters,
cardiac index,
gas exchange | | | Amr ² | 2010 | single | 2-3 coronary heart
disease, (ejection fraction
between 40% and 50%) | unstable angina; recent myocardial infarction (<1 month); prior CABG surgery; hepatic, renal, or pulmonary disease; concurrent valve repair or insufficiency; left bundle branch block or conduction defect; and treatment with oral hypoglycemic sulfamide (antagonist of K _{ATP} channels) and nicorandil (agonist of K _{ATP} channels) within 5 days before surgery | Premedication: diazepam,
Induction: midazolam,
sufentanil, pancuronium,
Maintenance: isoflurane
(preconditioning 10 mins),
midazolam,
sufentanil
(n=15) | Premedication: diazepam, Induction: midazolam, sufentanil, pancuronium, Maintenance: midazolam, sufentanil (n=15) | not defined | hemodynamic
data, cardiac
troponin I, cardiac
fraction of
creatine kinase,
cardiac function,
cardiac events
within 1 year | | | Baki ³ | 2013 | dual | coronary artery disease
and scheduled for elective
CABG | Left ventricular ejection fraction <30%, need for emergency coronary revascularization, acute reanl failure, hepatic failure, autoimmune disease, collagen tissue disease, systemic inflammatory disease, cerebrovascular disease within last 6 months | Premedication: midazolam, Induction: etomidate, fentanyl, rocuronium, Maintenance: desflurane, remifentanil (n=20) | Premedication:
midazolam, Induction:
etomidate, fentanyl,
rocuronium,
Maintenance:
propofol, remifentanil
(n=20) | not defined | cytokines (tumor
necrosis factor-α,
interleukin 6,
interleukin 8),
hemodynamic
data, S100 beta
level | | VOL: volatile anesthetics, TIVA: total intravenous anesthesia, CABG: coronary artery bypass graft, K_{ATP}: adenosine triphosphate dependent potassium channels.*: References are listed in table 5 in the supplemental digital content file 1. **Table 6: Detailed trial information continued** | Public | Publication details | | | Population | Interve | ntion | Out | tcome | |-------------------------------------|---------------------|---------|--|---|--|--|--|--| | Author* | Year | Centers | Inclusion criteria | Exclusion criteria | Treatment (VOL) | Control (TIVA or VOL) | Primary | Secondary | | Ballester ⁴ | 2011 | single | age > 18 years,
elective surgery and
ASA III or less | history of allergy to propofol, previous cardiac surgery, combined surgery, severe valve insufficiency, myocardial infarction within the previous 6 weeks, severe hepatic disease (alanine aminotransferase or aspartate aminotransferase >150U/I), renal failure (creatinine concentration >1.5mg/dl), severe chronic obstructive pulmonary disease(forced expiratory volume in 1 second, FEV1 <50%), preoperative antioxidant therapy and pregnancy | Premedication: n/r,
Induction: midazolam,
fentanyl, cis-atracurium
Maintenance: sevoflurane,
fentanyl
(n=18) | Premedication: n/r,
Induction: midazolam,
fentanyl, cis-atracurium,
Maintenance: propofol,
fentanyl (n=20) | intraoperative
myocardial
oxidative
stress
represented
by the level of
F2-
isoprostanes
in coronary
sinus blood | hemodynamic
data, cardiac
troponin I,
cardiac fraction
of creatine
kinase, lactate
level, cardiac
function, clinical
outcome | | Beck-
Schim-
mer ⁶ | 2012 | single | age >18 years,
scheduled for liver
resection (benign or
malignant tumors)
were eligible for the
study | non-German speaking, laparoscopic liver resection (minor resection), emergency surgery (safety concerns), experienced coagulopathy (platelets <50,000/mL and/or international normalized ratio >1.5), or presented with liver cirrhosis (histologically confirmed) | Premedication: midazolam, Induction: propofol, fentanyl, atracurium, Maintenance: sevoflurane (postconditioning circa 30mins), fentanyl, remifentanil (n=48) | Premedication: midazolam, Induction: propofol, fentanyl, atracurium, Maintenance: propofol, fentanyl+remifentanil (n=17) | aspartate
transaminase
level | alanine
transaminase,
other blood liver
synthesis and
function
parameters,
postoperative
complications | | Beck-
Schim-
mer ⁵ | 2008 | single | consecutive patients undergoing elective liver resection with inflow occlusion | age <18 years, liver cirrhosis, additional ablation therapies (cryosurgery or radiofrequency),living donors, and liver resections without inflow occlusion | Premedication: midazolam, Induction: propofol, fentanyl, atracurium, Maintenance: sevoflurane, fentanyl+remifentanil (n=40) | Premedication: midazolam, Induction: propofol, fentanyl, atracurium, Maintenance: propofol, fentanyl+remifentanil (n=34) | aspartate
transaminase
level | alanine
transaminase,
other blood liver
synthesis and
function
parameters,
postoperative
complications | VOL: volatile anesthetics, TIVA: total intravenous anesthesia, FEV1: forced expiratory volume in one second, n/r: not reported.*: References are listed in table 5 in the supplemental digital content file 1. Table 6: Detailed trial information continued | Publi | ication d | details | Po | pulation | Interve | ntion | | Outcome | |---------------------|-----------|---------|---|--|--|---|--------------------------------------|--| | Author* | Year | Centers | Inclusion criteria | Exclusion criteria | Treatment (VOL) | Control (TIVA or VOL) | Primary | Secondary | | Bein ⁷ | 2005 | single | elective minimal invasive CABG surgery single-vessel coronary artery disease (i.e., LAD stenosis). preoperative left ventricular ejection fraction >40% | unstable angina, acute
myocardial infarction < 4
weeks ago, valvular heart
disease, intracardiac shunts,
severe pulmonary disease,
pathologies of the esophagus
or stomach, emergency cases | Premedication:
midazolam, Induction:
propofol, remifentanil,
rocuronium, Maintenance:
sevoflurane, remifentanil
(n=24) | Premedication: midazolam, Induction: propofol, remifentanil, rocuronium, Maintenance: propofol, remifentanil (n=26) | myocardial
performance
index | myocardial cell
damage (cardiac
troponin T, cardiac
fraction of creatine
kinase,
echocardiography
variables,
hemodynamic data | | Bharti ⁸ | 2008 | single | elective CABG surgery,
ASA I-III | Patients with severely impaired left ventricular function (EF <30%, LVEDP >18), renal or liver impairment, recent myocardial infarction (<6 weeks), associated valvular lesion or heart block, gross obesity (BMI >30%), anticipated difficult intubation, repeated coronary surgery, concurrent valve repair, or aneurysmal resection | Premedication: diazepam,
Induction: sevoflurane,
fentanyl, vecuronium,
Maintenance: sevoflurane,
fentanyl (n=15) | Premedication:
diazepam, Induction:
propofol, fentanyl,
vecuronium,
Maintenance: propofol,
fentanyl (n=15) | incidence of
bradycardia | feasibility of volatile induction and maintenance technique, hemodynamic data, gas exchange, postoperative complications | | Biboulet
9 | 2012 | single | age > 75 years, ASA III
or IV with severe
cardiac comorbidities,
hip fracture, undergoing
hip nailing or partial hip
replacement | contraindication to spinal anesthesia, allergy to any of the anesthetic drugs used, and total hip replacement. | Premedication:n/r,
Induction: sevoflurane,
remifentanil, lidocaine local
vocal cord anesthesia,
Maintenance: sevoflurane,
remifentanil (n=14) | Premedication:n/r,
Induction: propofol,
remifentanil, lidocaine
local vocal cord
anesthesia,
Maintenance: propofol,
remifentanil (n=14) | number of
hypotensive
episodes | total dose of ephedrine administered, maximal decrease in mean arterial pressure, creatinine and serum urea nitrogen level, hemodynamic data | VOL: volatile anesthetics, TIVA: total intravenous anesthesia, CABG: coronary artery bypass graft, ASA: American Society of Anesthesiology physical status, LAD: left anterior descendend coronary artery, LVEDP: left ventricular end-diastolic pressure, EF: left ventrucular ejection fraction, BMI: body mass index.*: References are listed in table 5 in the supplemental digital content file 1. **Table 6: Detailed trial information continued** | Publi | ication o | details | Рор | ulation | Interv | vention | Outcome | | | |--------------------|-----------|---------
---|---|--|--|----------------------------------|--|--| | Author* | Year | Centers | Inclusion criteria | Exclusion criteria | Treatment (VOL) | Control (TIVA or VOL) | Primary | Secondary | | | Bignami
10 | 2012 | single | coronary artery disease, scheduled for elective mitral valve surgery, age > 18 years, signed the written informed consent, at least one coronary vessel with a stenosis > 50% at the coronary angiogram | Patients were excluded in the case of previous unusual response to an anaesthetic, use of sulfonylurea, theophylline, or allopurinol, elevated preoperative cardiac troponin I. | Premedication:
diazepam, Induction:
propofol,fentanyl,rocu
ronium, Maintenance:
sevoflurane, fentanyl
(n=50) | Premedication:
diazepam, Induction:
propofol,fentanyl,rocuro
nium, Maintenance:
propofol, fentanyl
(n=50) | cardiac
troponin I | mortality | | | Braz ¹¹ | 2013 | single | ASA I, age 18-50 years,
minimally invasive elective
otorhinological surgeries | smokers, alcoholics, obese, any
medication, vitamins,
antioxidants or radiation
therapy within last 30 days | Premedication:
midazolam, Induction:
propofol,fentanyl,rocu
ronium, Maintenance:
isoflurane, fentanyl
(n=15) | Premedication:
midazolam, Induction:
propofol,fentanyl,rocuro
nium, Maintenance:
propofol, fentanyl
(n=15) | not defined | plasma Interleukin 6
level, plasma
malondialdehyde
level, hemodynamic
parameters | | | Cavalca
12 | 2008 | single | stable angina, left ventricular
ejection fraction > 40%, age
60–80 years | aortic valve stenosis, angina on arrival in the operating room, and acute myocardial infarction during the past 7 days | Premedication: morphine, Induction: thiopental, remifentanil, pancuronium, succinylcholine, Maintenance: sevooflurane, fentanyl (n=21) | Premedication:
morphine, Induction:
thiopental, remifentanil,
pancuronium,
succinylcholine,
Maintenance: propofol,
fentanyl (n=22) | plasma γ-
tocopherol
level | plasma Interleukin
10 level, plasma
malondialdehyde
level, α-tocopherol
level, hemodynamic
parameters | | VOL: volatile anesthetics, TIVA: total intravenous anesthesia, ASA: American Society of Anesthesiology physical status.*: References are listed in table 5 in the supplemental digital content file 1. **Table 6: Detailed trial information continued** | Publi | ication o | details | Р | opulation | Interv | ention | Outcome | | | |---------------------|-----------|---------|--|--|---|--|---------------------|---|--| | Author* | Year | Centers | Inclusion criteria | Exclusion criteria | Treatment (VOL) | Control (TIVA or VOL) | Primary | Secondary | | | Conno ¹³ | 2009 | single | ASA status I–III,
scheduled to undergo
elective thoracic surgery
with lung resection
performed through
thoracotomy or
thoracoscopy, and
requiring OLV during
surgery | ongoing treatment with any dose of systemic or topical steroids, acute pulmonary or extrapulmonary infections (elevated C-reactive protein > 10 ng/ml [reference range<5 ng/ml] or leukocytosis > 10 x 10 ³ /l [reference range 3.0–9.6 x 10 ³ /l]), severe chronic obstructive pulmonary disease (Gold stage 2–4), history of recurrent pneumothoraces, pneumonectomy, and/or lung volume—reduction surgery | Premedication: midazolam, Induction: propofol, fentanyl, atracurium, Maintenance: sevoflurane, fentanyl+remifentanil (n=27) | Premedication: midazolam, Induction: propofol, fentanyl, atracurium, Maintenance: propofol, fentanyl+remifentanil (n=27) | lung
cytokines | pulmonary infections
necessitating
antibiotic treatment,
pneumonia,
atelectasis, pleural
effusion, fistula,
reintubation,
systemic
inflammatory
response syndrome,
sepsis, acute
respiratory distress
syndrome, surgical
revision, and death | | | Conzen 14 | 2003 | single | one vessel or two-vessel coronary artery disease suitable for repair without cardiopulmonary bypass (off-pump coronary artery bypass surgery), informed consent, age greater than 18 years, elective surgery, body mass index below 150% of ideal, and ASA II–IV | previous unusual response to an anesthetic, an experimental drug within 28 days before surgery, severe accompanying disease (hepatic, renal), previous surgical coronary artery repair, severe cardiac dysrhythmias or an ejection fraction below 0.3 preoperative cardiac catheterization), and combined surgery involving a second organ (e.g., carotid endarterectomy), oral glibenclamide or other sulfonylurea drugs | Premedication: midazolam, Induction: etomidate, sufentanil, pancuronium, Maintenance: sevoflurane, sufentanil (n=10) | Premedication: midazolam, Induction: propofol, sufentanil, pancuronium, Maintenance: propofol, sufentanil (n=10) | troponin I
level | intraoperative hemodynamic data, creatine kinase, myocardial fraction of creatine kinase, Interleukin 6 | | VOL: volatile anesthetics, TIVA: total intravenous anesthesia, OLV: one lung ventilation, ASA: American Society of Anesthesiology physical status.*: References are listed in table 5 in the supplemental digital content file 1. **Table 6: Detailed trial information continued** | Publica | tion de | tails | | Population | Interve | ention | Out | come | |-----------------------|---------|---------|---|---|---|--|--|--| | Author* | Year | Centers | Inclusion criteria | Exclusion criteria | Treatment (VOL) | Control (TIVA or VOL) | Primary | Secondary | | Cromheecke | 2006 | single | elective aortic valve replacement for aortic stenosis | Previous coronary surgery or valve replacement, combined operations (simultaneous valve repair and coronary surgery, carotid endarterectomy, or left ventricular aneurysm repair), critical aortic stenosis (aortic valve area <0.5 cm², unstable angina, occurrence of coronary stenosis on coronary angiography, documented myocardial infarction within the previous 6 wk, active congestive heart failure, hemodynamic instability with the need for medical or mechanical support, severe hepatic disease (alanine aminotransferase or aspartate aminotransferase _150 U/L), renal insufficiency (creatinine concentration >1.5 mg/dL), severe chronic obstructive pulmonary disease (forced expired volume in 1 s <0.8 L), or history of neurologic disturbance | Premedication: n/s,
Induction:
sevoflurane,remifentanil,
pancuronium,
Maintenance:
sevoflurane, remifentanil
(n=15) | Premedication: n/s,
Induction:
propofol,remifentanil,pa
ncuronium,
Maintenance: propofol,
remifentanil (n=15) | cardiac
troponin I
level,
maximum rate
of pressure
development
(dP/dt) post -
CPB | intraoperative
hemodynamic
data, | | De Hert ²⁰ | 2009 | dual | elective
isolated
coronary
artery
bypass grafting
with CPB were
included | documented evidence for a recent (< 7 days) or ongoing myocardial infarction, combined surgical procedures or redo operations | Premedication: n/s,
Induction: n/s,
Maintenance:
sevoflurane (n=132)
desflurane (n=137),
opiod n/s | Premedication: n/s,
Induction: n/s,
Maintenance: propofol
(n=145), opiod n/s | troponin T
level | mortality,
clinical outcome | VOL: volatile anesthetics, TIVA: total intravenous anesthesia, CPB: cardiopulmonary bypass, ASA: American Society of Anesthesiology physical status, n/s: not specified in study protocol.*: References are listed in table 5 in the supplemental digital content file 1. **Table 6: Detailed trial information continued** | Publi | ication o | details | | Population | Interve | ntion | Outo | come | |--------------------------|-----------|---------|--|--|---|---|--|---------------------| | Author* | Year | Centers | Inclusion criteria | Exclusion criteria | Treatment (VOL) | Control (TIVA or VOL) | Primary | Secondary | | De
Hert ¹⁷ | 2003 | single | age >70 years with
three-vessel disease
and with a
preoperative
ejection fraction less
than 50% | repeat coronary surgery, concurrent valve repair, or aneurysm resection, unstable angina or with valve insufficiency | Premedication: n/r,
Induction: group 1 (n=15):
sevoflurane, remifentanil,
pancuronium, group 2
(n=15): diazepam,
remifentanil, pancuronium,
Maintenance: sevoflurane,
remifentanil (group 1),
desflurane, remifentanil
(group 2) | Premedication: n/r,
Induction: propofol,
remifentanil,
pancuronium,
Maintenance: propofol,
remifentanil (n=15) | cardiac
troponin I
level,
maximum rate
of pressure
development
(dP/dt) post -
CPB | hemodynamic
data | | De
Hert ¹⁶ | 2002 | single | elective CABG
surgery,
preoperative
ejection fraction of
more than 40% were
included | repeat coronary surgery, concurrent valve repair, or aneurysm resection, unstable angina or valve insufficiency, None of the patients included in this study had oral antidiabetic medication or were treated with theophylline | Premedication: n/r,
Induction: sevoflurane,
remifentanil, pancuronium,
Maintenance: sevoflurane,
remifentanil (n=10) | Premedication: n/r,
Induction: propofol,
remifentanil,
pancuronium,
Maintenance: propofol,
remifentanil (n=10) | cardiac
troponin I
level | hemodynamic
data | | De
Hert ¹⁸ | 2004 | single | elective coronary
surgery with CPB | previous coronary or valvular heart surgery, combined operations (simultaneous valve repair, carotid endarterectomy, or LV aneurysm repair), unstable angina, valve insufficiency, documented myocardial infarction within the previous 6 weeks, active congestive heart failure, hemodynamic instability with the need for medical or mechanical support, severe hepatic disease (alanine aminotransferase or aspartate aminotransferase > 150 U/I), renal insufficiency (creatinine concentration > 1.5 mg/dl), severe chronic obstructive pulmonary disease (forced expired volume in 1 s < 0.8 l), or history of neurologic disturbances | Premedication: lorazepam, fentanyl, Induction: propofol, remifentanil, pancuronium, Maintenance: sevoflurane (three different durations of administration), remifentanil (n=150, 50 per group) | Premedication: lorazepam, fentanyl Induction: propofol, remifentanil, pancuronium, Maintenance: propofol, remifentanil (n=50) | cardiac
troponin I
level | hemodynamic
data | VOL: volatile anesthetics, TIVA: total intravenous anesthesia, CPB: cardiopulmonary bypass, CABG: coronary artery bypass graft, LV: left ventricular.*: References are listed in table 5 in the supplemental digital content file 1. **Table 6: Detailed trial information continued** | Publi | ication d | etails | | Population | Interve | ention | Out | tcome | |-----------------------------|-----------|---------|--|--|--|--|---------------------------------------|--| | Author* | Year | Centers | Inclusion criteria | Exclusion criteria | Treatment (VOL) | Control (TIVA or VOL) | Primary | Secondary | | De Hert
II ¹⁹ | 2004 | single | elective coronary
surgery with
cardiopulmonary
bypass | previous coronary or valvular heart surgery, combined operations (simultaneous valve repair, carotid endarterectomy, or LV aneurysm repair), unstable angina, valve insufficiency, documented myocardial infarction within the previous 6 weeks, active congestive heart failure, hemodynamic instability requiring medical or mechanical support, severe hepatic disease (alanine aminotransferase or aspartate aminotransferase >150 U/I), renal insufficiency (creatinine concentration >1.5 mg/dl), severe chronic obstructive pulmonary disease (forced expired volume in 1 s <50% of predicted or <2.0 I), or history of neurologic disturbances | Premedication: lorazepam, fentanyl Induction: group 1 and 2 (n=160) midazolam, remifentanil, pancuronium, Maintenance: group 1 sevoflurane, remifentanil (n=80), group 2 desflurane, remifentanil (n=80) | Premedication: lorazepam, fentanyl Induction: group 3 (n=80) midazolam, remifentanil, pancuronium, group 4 (n=80) propofol, remifentanil, pancuronium Maintenance: group 3 midazolam, remifentanil (n=80), group 4 propofol, remifentanil (n=80) | hospital and
ICU length
of stay | cardiac
troponin I
level, hemo-
dynmanic data | | Deegan ²¹ | 2010 | single | 18 to 85 years and scheduled for mastectomy and axillary node clearance or wide local tumor excision without known extension beyond the breast and axillary nodes (ie, believed to be tumor stages I-III, nodes 0-2) | previous breast cancer surgery (except diagnostic biopsy), inflammatory breast cancer, ASA IV or greater, any contraindication to paravertebral anesthesia (including coagulopathy and abnormal anatomy), and any contraindication to midazolam, propofol, sevoflurane, fentanyl, or morphine | Premedication: n/r,
Induction: propofol,
fentanyl, Maintenance:
sevoflurane, morphine
(n=17) | Premedication: n/r,
Induction: propofol,
fentanyl, Maintenance:
propofol, fentanyl,
paravertebral block
(n=15) | not defined | systemic
inflammatory
response/plas
ma cytokine
levels | VOL: volatile anesthetics, TIVA: total intravenous anesthesia, LV: left ventricular, ASA: American Society of Anesthesiology physical status.*: References are listed in table 5 in the supplemental digital content file 1. **Table 6: Detailed trial information continued** | Public | cation d | etails | | Population | Interve | ention | Outcome | | |------------------------|----------|---------|--|---|--
--|--|---| | Author* | Year | Centers | Inclusion criteria | Exclusion criteria | Treatment (VOL) | Control (TIVA or VOL) | Primary | Secondary | | Eremeev 22 | 2011 | single | CAD, elective off-
pump CABG,
EF>30%, no
contraindication
regional anesthesia,
ability to assess
pain, scale 1-10,
ability to use PCA | valvular disease concomittant,
severe atriosclerosis, damage
peripherial vessels, simultant
porcedure with valve or carotid
endarteiocetomy, necessity of CPB | Premedication: phenazepam, phenobarbital, omeprazol, promedol, Induction: midazolam, fentanyl, pipercuronium, Maintenance: sevoflurane, fentanyl (n=12) | Premedication: phenazepam, phenobarbital, omeprazol, promedol, Induction: midazolam, fentanyl, pipercuronium, Maintenance: propofol, fentanyl (n=12) | not defined | hemodynamic
data,
postoperative
pain | | Flier ²³ | 2010 | single | elective CABG with
the use of CPB | emergency surgery; combined or re-
do procedures; diagnosis of any
hormone disorder other than
diabetes, chronic inflammatory
disease, malignancy, or current
infections,
preoperative treatment with steroids;
and participation in another study
that might interfere with the
endpoints of the current trial. | Premedication: midazolam, Induction: midazolam, sufentanil, pancuronium, Maintenance: isoflurane, sufentanil (n=41) | Premedication: midazolam, Induction: midazolam,sufentanil,pan curonium, Maintenance: propofol, sufentanil (n=43) | cardiac
troponin I
level | clinical
outcome, in-
hospital
morbidity and
mortality | | Fräßdorf ²⁴ | 2009 | single | isolated coronary
revascularization
(CABG) | ASA status 4 or 5, angina during the previous 72 hours, unstable angina, acute myocardial infarction, ejection fraction lower than 40%, congestive heart failure, emergency procedures, former CABG surgery, concurrent valve repair, oral antidiabetics, or theophylline therapy | Premedication: diazepam,
Induction: propofol,
sufentanil, pancuronium,
Maintenance: sevoflurane,
sufentanil (n=20) | Premedication: diazepam, Induction: propofol, sufentanil, pancuronium, Maintenance: propofol, sufentanil (n=10) | cardiac
troponin I
level | clinical outcome, hemodynamic data, creatine kinase, myocardial fraction of creatine kinase | | Fudickar ²⁵ | | single | elective surgical
treatment of
peripheral occlusive
arterial disease with
clamping of the
femoral artery under
general anesthesia | skin disease rendering NIRS impossible and patients with amputation of the leg opposite to the side of surgery were excluded from the study. | Premedication:midazolam,
Induction: propofol,
remifentanil, rocuronium,
Maintenance: sevoflurane
(preconditioning), propofpl,
remifentanil (n=20) | Premedication:midazola
m, Induction: propofol,
remifentanil, rocuronium,
Maintenance: propofol,
remifentanil (n=20) | leg muscle
tissue
oxygen
saturation | clinical
outcome,
blood gas
analysis data | VOL: volatile anesthetics, TIVA: total intravenous anesthesia, CAD: Coronary artery disease, CPB: cardiopulmonary bypass, CABG: coronary artery bypass graft, ASA: American Society of Anesthesiology physical status, PCA: patient controlled anesthesia, EF: ejection fraction, NIRS: near infrared spectroscopy.*: References are listed in table 5 in the supplemental digital content file 1. Table 6: Detailed trial information continued | Public | cation d | etails | | Population | Interve | ention | Ou | tcome | |----------------------------|----------|------------------|--|--|--|--|-------------|---| | Author* | Year | Centers | Inclusion criteria | Exclusion criteria | Treatment (VOL) | Control (TIVA or VOL) | Primary | Secondary | | Garcia ²⁶ | 2005 | Multi-
center | elective CABG
surgery | concomitant aortic or valvular surgery, elevated cardiac enzymes <24 h before surgery, unstable angina, angina <24 h before surgery, hemodynamic instability requiring inotropic support and administration of diazoxide, nicorandil, sulfonylurea or theophylline | Premedication: n/r
Induction: propofol,
etomidate, opioide+NMBA
n/s, Maintenance:
sevoflurane, opioide n/s
(n=37) | Premedication: n/r
Induction: propofol,
etomidate,
opioide+NMBA n/s,
Maintenance: propofol,
opioide n/s (n=35) | not defined | transcript levels of platelet— endothelial cell adhesion molecule-1, cardiac troponin I, NTproBNP, clinical outcome | | Gaszynski
²⁷ | 2011 | single | morbid obesity
(body mass index
>40 kg/m²), ASA ≤
II, NYHA ≤ II | coexisting cardiovascular diseases, except for well-controlled hypertension | Premedication: n/r
Induction: midazolam,
propofol,fentanyl,
atracurium,
Maintenance: sevoflurane,
fentanyl (n=41) | Premedication: n/r
Induction: midazolam,
propofol,fentanyl,
atracurium,
Maintenance: propofol,
fentanyl (n=40) | not defined | hemodynamic
data | | Godet ²⁸ | 1990 | single | were undergoing
surgical repairs of
the descending
thoracic aorta that
did not necessitate
one lung ventilation | none | Premedication: n/r
Induction: flunitrazepam,
fentanyl, pancuronium,
Maintenance: isoflurane,
fentanyl (n=10) | Premedication: n/r
Induction: flunitrazepam,
fentanyl, pancuronium,
Maintenance: high dose
fentanyl (n=10) | not defined | hemodynamic
data, blood
gas analysis
data, oxygen
consumption
and delivery | | Gravel ²⁹ | 1999 | single | age >18 and <75 yr,
left ventricular
ejection fraction
>40%, normal
hepatic and renal
function | Emergency surgery, allergy to study medication, drug or alcohol abuse, gastro-esophageal reflux, obesity (body mass index >32), anticipated difficult intubation | Premedication: lorazepam, morphine Induction: sevoflurane, sufentanil, cis-atracurium, Maintenance: sevoflurane, sufentanil (n=15) | Premedication: lorazepam, morphine Induction: midazolam, sufentanil, cis- atracurium, Maintenance: propofol, sufentanil (n=15) | not defined | hemodynamic
data, clinical
outcome | VOL: volatile anesthetics, TIVA: total intravenous anesthesia, CABG: coronary artery bypass graft, ASA: American Society of Anesthesiology physical status, NYHA: New York Heart Association, NTproBNP: N-terminal prohormone of brain natriuretic peptide, n/r: not reported, n/s: not specified in study protocol, NMBA: neuromuscular blocking agent.*: References are listed in table 5 in the supplemental digital content file 1. **Table 6: Detailed trial information continued** | Publication details | | Population | | Intervention | | Outcome | | | |----------------------|------|-------------|---|---|---|---|--------------------------------|---| | Author* | Year | Centers | Inclusion criteria | Exclusion criteria | Treatment (VOL) | Control (TIVA or VOL) | Primary | Secondary | | Guarracino
30 | 2006 | multicenter | elective CABG surgery with the OPCAB; isolated coronary revascularization were eligible if referred for an elective procedure, were 18 years old, and if an OPCAB procedure was deemed technically feasible technique | case of CABG with CPB, myocardial infarction during the preceding 6 weeks, valve insufficiency, active congestive heart failure, any other surgical procedure during current admission, previous unusual response to an anesthetic, and use of any experimental drugs within 28 days before surgery. Patients taking sulfonylurea, theophylline, or allopurinol were also excluded. | Premedication: diazepame, morphine, scopolamine, Induction: midazolam, fentanyl, pancuronium, Maintenance: desflurane, fentanyl (n=57) | Premedication: diazepame, morphine, scopolamine, Induction: midazolam, fentanyl, pancuronium, Maintenance: desflurane, fentanyl (n=55) | cardiac
troponin I
level | postoperative
morbidity,
length of
hospital stay | | Helman ³¹ | 1992 | single | elective CABG
surgery, EF>30%,
stenosis
grade
coronary artery >70%
for RIVA, RCX, RCA
or >50% main stem | uninterpretable ECG (pacermaker, left bundle branch block), esophageal disease precluding TEE probe insertion | Premedication: midazolam, morphine, Induction: thiopental, sufentanil, pancuronium or vecuronium, Maintenance: desflurane, sufentanil (n=100) | Premedication: midazolam, morphine, Induction: thiopental, sufentanil, pancuronium or vecuronium, Maintenance: midazolam during CPB+ high dose sufentanil (n=100) | not defined | myocardial
ischemia
events,
hemodynamic
and
echocardiogra
phic data | VOL: volatile anesthetics, TIVA: total intravenous anesthesia, CABG: coronary artery bypass graft, OPCAB: off-pump coronary artery bypass, CPB: cardiopulmonary bypass, ECG: electrocardiography, EF: ejection fraction, RIVA: Ramus interventricularis anterior of the left coronary artery, RCX, Ramus circumflexus of the left coronary artery, RCA: right coronary artery, TEE: transesophagic echocardiography.*: References are listed in table 5 in the supplemental digital content file 1. **Table 6: Detailed trial information continued** | Publication details | | Population | | Intervention | | Outcome | | | |---------------------|------|------------|--|--|---|---|-------------|--| | Author* | Year | Centers | Inclusion criteria | Exclusion criteria | Treatment (VOL) | Control (TIVA or VOL) | Primary | Secondary | | Howie ³² | 1996 | single | undergo elective
mitral valve repair or
replacement surgery
who had a mean
pulmonary artery
pressure equal to or
more than 25 mmHg
written, informed
consent | Pregnancy, left main coronary artery stenosis, significant left ventricular dysfunction with a left ventricular ejection fraction ~40% as measured by radiographic angiography, significant cardiac dysrhythmias as defined by the cardiologist in the catheterization report, prior myocardial infarction within 48 h before surgery, CABG surgery, significant liver or kidney disease as defined by serum levels of aminotransferase exceeding three times normal, bilirubin > 2 mg/dL, and creatinine > 2.5 mg/d. | Premedication:
lorazepam, morphine,
Induction: thiopental,
vecuronium or
pancuronium,
Maintenance:
isoflurane, fentanyl
(n=23) | Premedication: lorazepam, morphine, Induction: thiopental, vecuronium or pancuronium, Maintenance: high dose fentanyl (n=21) | not defined | hemodynamic data | | Huang ³³ | 2011 | single | primary elective
CABG | emergency revascularization for unstable angina, previous coronary or valvular heart surgery, combined operations (simultaneous valve repair, carotid endarterectomy or left ventricular aneurysm repair), preoperative myocardial infarction within the last 4 weeks or ongoing myocardial infarction, poor ventricular function (ejection fraction 0.30), preoperative haemodynamic instability with the need for medical or mechanical support, severe hepatic disease, (alanine aminotransferase or aspartate aminotransferase>150 units/l), renal insufficiency (creatinine concentration>1.5 mg/dl), severe chronic obstructive pulmonary disease (forced expiratory volume in 1 s) >0.8 L, severe coagulation abnormalities, history of neurological disturbances | Premedication: morphine, scopolamine, Induction: etomidate, fentanyl, pancuronium, Maintenance: isoflurane, fentanyl (n=30) | Premedication: morphine, scopolamine, Induction: etomidate, fentanyl, pancuronium, Maintenance: group 1 propofol + fentanyl (n=30), group 2 midazolam + fentanyl (n=29) | not defined | cardiac
troponin I,
postoperative
morbidity,
hemodynamic
data,
inflammatory
cytokine levels | VOL: volatile anesthetics, TIVA: total intravenous anesthesia, CABG: coronary artery bypass graft.*: References are listed in table 5 in the supplemental digital content file 1. **Table 6: Detailed trial information continued** | Publication details | | Population | | Intervention | | Outcome | | | |-----------------------|------|------------|--|---|---|--|-------------|---| | Author* | Year | Centers | Inclusion criteria | Exclusion criteria | Treatment (VOL) | Control (TIVA or VOL) | Primary | Secondary | | Jovic ³⁴ | 2012 | single | elective AVR due to
severe aortic
stenosis, aortic
valve area <1 cm ² ,
with
cardiopulmonary
bypass | previous heart surgery (coronary, valvular or aortic reconstructive surgery), concomitant: coronary or valvular disease, aortic valve insufficiency, acute congestive heart failure, renal insufficiency (creatinine concentration >1.5 mg/dL), as well as presented carotid artery disease (stenosis >50%), severe hepatic disease (alanine or aspartate aminotransferase >150 U/L) and severe chronic obstructive pulmonary disease | Premedication: midazolam, morphine, atropine Induction: midazolam, sufentanil, pancuronium, Maintenance: sevoflurane, sufentanil (n=11) | Premedication: midazolam, morphine, atropine, Induction: propofol, sufentanil, pancuronium, Maintenance: propofol, sufentanil (n=11) | not defined | protein levels
and
transcriptional
levels of
mitochondrial
enzymes,
hemodynamic
data | | Kendall ³⁵ | 2004 | single | elective OPCAB | Patients undergoing emergency surgery and those with unstable angina were excluded from the study. Patients with plasma creatinine values > 160 mmol.l) were excluded from the study; troponin T levels can be difficult to interpret in the presence of renal impairment. Patients taking anticoagulant therapy and those with any other contraindication to the insertion of a thoracic epidural were also excluded. | Premedication: n/r,
Induction: etomidate,
fentanyl, vecuronium,
Maintenance:
isoflurane, fentanyl
(n=10) | Premedication: n/r,
Induction: propofol,
fentanyl, vecuronium,
Maintenance: propofol,
fentanyl (n=10) | not defined | troponin T
levels,
hemodynamic
data | | Kirov ³⁶ | 2007 | single | coronary artery
disease, scheduled
for elective OPCAB | age < 18 years, simultaneous interventions (carotid endarterectomy, aneurysm repair, etc.) and severely stenosed femoral arteries | Premedication: diazepam, Induction: midazolam, fentanyl, pipecuronium, Maintenance: isoflurane, fentanyl (n=12) | Premedication: diazepam Induction: midazolam, fentanyl, pipecuronium, Maintenance: group 1 midazolam, fentanyl (n=12), group 2 propofol, fentanyl (n=10) | not defined | hemodynamic
data | VOL: volatile anesthetics, TIVA: total intravenous anesthesia, CABG: coronary artery bypass graft, OPCAB: off-pump coronary artery bypass, AVR: aortic valve replacement.*: References are listed in table 5 in the supplemental digital content file 1. **Table 6: Detailed trial information continued** | Publication details | | Population | | Intervention | | Outcome | | | |---------------------|------|------------|--|---|---|--|-------------|---| | Author* | Year | Centers | Inclusion criteria | Exclusion criteria | Treatment (VOL) | Control (TIVA or VOL) | Primary |
Secondary | | Ko ³⁸ | 2010 | single | liver donors
undergoing right
hepatectomy | Patients undergoing re-operation, those contraindicated to spinal injection of morphine sulfate (e.g. skin infection at the site of injection) or those with a known allergy to any of the drugs used in this study were excluded | Premedication: none,
Induction: thiopental,
remifentanil,vecuronium,
Maintenance:
sevoflurnae,
remifentanil,morphine
intrathecal (n=37) | Premedication: none,
Induction: thiopental,
remifentanil, vecuronium,
Maintenance: isoflurane,
remifentanil,morphine
intrathecal (n=37) | ALAT | liver markers
(ASAT,
albumin),
prothrombin
time, blood
urea nitrogen,
creatinine | | Ko ³⁷ | 2008 | single | patients undergoing right donor hepatectomy | known allergy to eggs, propofol, or any of the drugs used in this study. | Premedication: n/r
Induction: thiopental,
opiod n/r,vecuronium,
Maintenance: desflurane,
opiod n/r (n=35) | Premedication: n/r
Induction:propofol,
remifentanil,vecuronium,
Maintenance: desflurane,
remifentanil (n=35) | not defined | liver markers (ALAT, ASAT, total bilirubin, prothrombin time, albumin), blood urea nitrogen, creatinine, postsurgical morbidity | | Kortekaas 39 | | single | regurgitation due to
degenerative mitral
valve disease | left ventricular dysfunction, (ejection fraction below 35%), minimal invasive or emergency, procedures, previous cardiac surgery, and the use of ketamine, aprotinin, corticosteroids, and volatile sevoflurane perioperatively | Premedication: lorazepam, Induction: propofol, remifentanil, NMBA: n/r, Maintenance: sevolfurane during CPB, propofol, remifentanil (n=11) | Premedication: lorazepam, Induction: propofol, remifentanil, NMBA: n/r, Maintenance: propofol, remifentanil (n=10) | not defined | cardiac
troponin I,
cytokine levels | VOL: volatile anesthetics, TIVA: total intravenous anesthesia, CPB: cardiopulomanry bypass, NMBA: neuromuscular blocking agent, ALAT: alanine aminotransaminase, ASAT: aspartate aminotransferase, n/r: not reported.*: References are listed in table 5 in the supplemental digital content file 1. **Table 6: Detailed trial information continued** | Public | ation de | etails | | Population | Interve | ention | Outcome | | | | |-----------------------|----------------------|---|---|--|--|--|---|---|--|--| | Author* | Year | Centers | Inclusion criteria | Exclusion criteria | Treatment (VOL) | Control (TIVA or VOL) | Primary | Secondary | | | | Kottenberg | 2012 | three-vessel coronary artery disease scheduled for CABG surgery,>18 years of age, who were scheduled first-time CABG surgery for three-vessel coronary artery disease were eligible The proper single The properative individual infart preoperative inotropic support be induction of anesthesia, any kind mechanical assist device, those any condition potentially increas preoperative troponin I concentre e.g., coronary interventions with previous 6 weeks, or those having received any type of emergency surgery, or those with any previous and company artery disease were eligible The proper single in three-vessel any type of diabetes mellitus (controlled by diet, oral drugs, or insulin), renal insufficiency (seru creatinine >2 mg/dl), peripheral vascular disease affecting the up limbs, acute coronary syndrome acute or recent myocardial infart preoperative inotropic support be induction of anesthesia, any kind mechanical assist device, those any condition potentially increas preoperative troponin I concentre e.g., coronary interventions with previous 6 weeks, or those having received any type of emergency surgery, or those with any previous acrdiac operations were excluded Patients receiving chronic treatm with acetylsalicylic acid and/or clopidogrel The proper size of diabetes mellitus (controlled by diet, oral drugs, or insulin), renal insufficiency (seru creatinine >2 mg/dl), peripheral vascular disease affecting the up limbs, acute coronary syndrome acute or recent myocardial infart preoperative inotropic support be induction of anesthesia, any kind mechanical assist device, those any condition potentially increas preoperative troponin I concentre e.g., coronary interventions with previous 6 weeks, or those having received any type of emergency surgery, combined CABG/valve surgery, or those with any previous accentration and the properative cardiac troponin I volume. | (controlled by diet, oral drugs, or insulin), renal insufficiency (serum creatinine >2 mg/dl), peripheral vascular disease affecting the upper limbs, acute coronary syndrome, acute or recent myocardial infarction, preoperative inotropic support before induction of anesthesia, any kind of mechanical assist device, those with any condition potentially increasing preoperative troponin I concentration, e.g., coronary interventions within the previous 6 weeks, or those having received any type of emergency surgery, combined CABG/valve surgery, or those with any previous cardiac operations were excluded. Patients receiving chronic treatment with acetylsalicylic acid and/or clopidogrel | Premedication: flunitrazepam, Induction: etomidate, sufentanil, rocuronium, Maintenance: isoflurane, sufentanil (n=39) | Premedication: flunitrazepam, Induction: etomidate, sufentanil, rocuronium, Maintenance: propofol, sufentanil (n=33) | cardiac
troponin I
level | creatinine
level,
anesthetic and
surgical data | | | | | Landoni ⁴¹ | for r
repa
yea | | for mitral valve
repair age > 18
years, written | response to an anesthetic; or use of sulfonylurea, theophylline, or | Premedication: morphine, scopolamine Induction: propofol, fentanyl, atracurium, Maintenance: isoflurane, fentanyl (n=59) | Premedication:
morphine, scopolamine
Induction: propofol,
fentanyl, atracurium,
Maintenance:
isoflurane, fentanyl
(n=61) | cardiac
troponin I
peak level | postoperative
morbidity,
length of
hospital stay | | | VOL: volatile anesthetics, TIVA: total intravenous anesthesia, CABG: coronary artery bypass graft.*: References are listed in table 5 in the supplemental digital content file 1. , **Table 6: Detailed trial information continued** | Public | ation d | etails | | Population | Interv | ention | Outcome | | | | |------------------------|--|---------|---
---|--|---|---|--|--|--| | Author* | Year | Centers | Inclusion criteria | Exclusion criteria | Treatment (VOL) | Control (TIVA or VOL) | Primary | Secondary | | | | Lee, J. ⁴³ | aged 40 to 70 years old and undergoing an elective Ivor Lewis operation primary squamous cell or adenocarcinoma of the esophagus temperature (above 37°C), increased levels of C-reactive protein and white blood cells, an administration of nonsteroidal anti-inflammatory agent or corticosteroid within 3 months, and a vital capacity or peak expiratory volume at one minute 50% of expected | | Premedication:n/r
Induction: thiopental,
rocuronium,
Maintenance:
sevoflurane, fentanyl
(n=24) | Premedication:n/r
Induction: propofol,
remifentanil, rocuronium,
Maintenance: propofol,
remifentanil (n=24) | interleukin
6 level | pulmonary
complications
and
inflammatory
response | | | | | | Lee,M-C. ⁴² | 2006 | | with stable angina
and
multi-vessel disease
undergoing elective
CABG surgery | Patients with acute (1 week) myocardial infarction, unstable angina, left ventricular aneurysm or very poor left ventricular function (ejection fraction 25%), significant valvular disease, chronic obstructive pulmonary disease, advanced renal or hepatic dysfunction and those taking sulphonylurea anti-diabetic drugs or theophylline preparations | Premedication:n/r
Induction: diazepam,
fentanyl, pancuronium
Maintenance: isoflurane,
fentanyl (n=20) | Premedication:n/r
Induction: diazepam,
fentanyl, pancuronium
Maintenance: propofol,
midazolam, fentanyl
(n=20) | not defined | cardiac troponin I level, hemodynmani c data, perioperative pharmacologic al inotropic support, clinical outcome | | | | Leung ⁴⁴ | 1991 single elective CABG none | | none | Premedication: diazepam, morphine Induction: diazepam, thiopental, fentanyl, NMBA n/s Maintenance: isoflurane, fentanyl (n=64) | Premedication: diazepam, morphine Induction: diazepam, thiopental, sufentanil, NMBA n/s Maintenance: midazolam, sufentanil (n=126) | not defined | hemodynamic
data, ischemic
episodes,
clincial
outcome | | | | VOL: volatile anesthetics, TIVA: total intravenous anesthesia, NMBA: neuromusular blocking agent, CABG: coronary artery bypass graft, ASA: American Society of Anesthesiology physical status.*: References are listed in table 5 in the supplemental digital content file 1. **Table 6: Detailed trial information continued** | Publica | ation de | tails | | Population | Inter | vention | Ou | tcome | |------------------------|--|---------|---|--|---|--|---|-----------| | Author* | Year | Centers | Inclusion criteria | Exclusion criteria | Treatment (VOL) | Control (TIVA or VOL) | Primary | Secondary | | Lindholm ⁴⁵ | 2013 single Consecutive patients with abdominal aortic aneurysm and/or aortic arteriosclerosis obliterans scheduled for open abdominal aortic surgery 2013 single Consecutive patients with abdominal abdominal aortic are riosclerosis obliterans scheduled for open abdominal aortic surgery 2013 single Consecutive patients with abdominal aortic surgerious infarction 30 days before inclusion, acuabdominal aortic surgery (acute dissector upture), planned laparoscopic abdominal and continuous patients with patients with abdominal autic surgery, included in other pharmaceutical studies, abuse of opioi benzodiazepines, antiepileptic drugs, alcohol, and α2-agonists, pregnant and breastfeeding women, familiar history of malignant hyperthermia, known hypersensitivity for opioids, propofol, or volatile anesthetics, serious arrhythmia ventricular fibrillation/fachycardia or tachycardia >100 beats/min (atrial fibrillation/flutter <100 beats/min was acceptable), severe valvular diseases requiring surgical repair before major noncardiac surgery, uncontrolled hypertension, serious psychiatric diseasunstable angina pectoris or myocardial infarction 30 days before inclusion, acuabdominal aortic surgery (acute dissector rupture), planned laparoscopic abdominal aortic surgery alcohol, and α2-agonists, pregnant and cohol, | | pharmaceutical studies, abuse of opioids, benzodiazepines, antiepileptic drugs, alcohol, and α2-agonists, pregnant and breastfeeding women, familiar history of malignant hyperthermia, known hypersensitivity for opioids, propofol, or volatile anesthetics, serious arrhythmias; ventricular fibrillation/tachycardia or tachycardia >100 beats/min (atrial fibrillation/flutter <100 beats/min was acceptable), severe valvular diseases requiring surgical repair before major noncardiac surgery,uncontrolled hypertension, serious psychiatric disease, unstable angina pectoris or myocardial infarction 30 days before inclusion, acute abdominal aortic surgery (acute dissection or rupture), planned laparoscopic abdominal | Premedication: paracetamol, Induction: thiopental, fentanyl, vecuronium, Maintenance: sevoflurane, fentanyl (n=97) | Premedication: paracetamol, Induction: thiopental, fentanyl, vecuronium, Maintenance: propofol, sufentanil (n=96) | cardiac
troponin I
level | postoperative
morbidity,
diuresis,
anesthetic and
surgical data | | | Lorsomradee 46 | or rupture), planned laparoscopic abdominal aortic aneurysm surgery | | Premedication: lorazepam, fentanyl, droperidol, Induction: sevoflurane, remifentanil, cis- atracurium, Maintenance: sevoflurane, fentanyl (n=160) | Premedication: lorazepam, fentanyl, droperidol, Induction: sevoflurane, remifentanil, cis- atracurium, Maintenance: propofol, fentanyl (n=160) | serum
glutamic
oxaloacetic
trans-
aminase | cardiac
troponin I, liver
enzymes,
renal function,
hemodynamic
data | | | VOL: volatile anesthetics, TIVA: total intravenous anesthesia, CABG: coronary artery bypass graft, CPB: cardiopulmonary bypass.*: References are listed in table 5 in the supplemental digital content file 1. **Table 6: Detailed trial information continued** | Publi | cation d | etails | | Population | Inter | vention | Outcome | | | |------------------------------
---|---------|---|--|--|---|--|--|--| | Author* | Year | Centers | Inclusion criteria | Exclusion criteria | Treatment (VOL) | Control (TIVA or VOL) | Primary | Secondary | | | Lurati
Buse ⁴⁷ | disease +planned for major surgery /general anesthesia or 2 2 risk factors for CAD + major vascular | | +planned for major surgery /general anesthesia or ≥ 2 risk factors for CAD + major vascular surgery/general | current medication with sulfonylurea derivatives or theophylline unless stopped ≥2 days before surgery because these drugs reportedly inhibit anesthetic preconditioning; current congestive heart failure; current unstable angina pectoris; preoperative hemodynamic instability, defined as the use of vasopressors; hepatic disease, defined as alanine aminotransferase and/or aspartate aminotransferase values >100 U/L; renal insufficiency, defined as creatinine clearance <30 mL/min; emergent surgery; severe chronic obstructive pulmonary disease, defined as forced expiratory volume in the first second of expiration <1 L; prior enrollment in the study; concurrent enrollment in another RCT; pregnancy; or absence of written informed consent. | Premedication: n/s
Induction:etomidate,
opiods + NMBAs n/s,
Maintenance:
sevoflurane, opioids
n/s (n=184) | Premedication: n/s Induction:etomidate, opiods + NMBAs n/s, Maintenance: propofol, opioids n/s (n=201) | ischemic
episodes
(composite
of troponin T
elevation
and/or
ischemia in
ECG) | ECG recordings, hemodynamic variables, N- terminal prohormone of brain natriuretic peptide | | | Mahmoud ⁴⁸ | 2011 | single | adult ASA I-III patients undergoing elective open thoracic surgery using one-lung ventilation | significant lung diseases forced expiratory volume in 1 s or vital capacity < 50% of the predicted values, heart failure or mean pulmonary artery pressure >30mmHg, coagulation disorders or a history of preoperative immuno-suppressant medications | Premedication: midazolam Induction:propofol, fentanyl, cis- atracurium, Maintenance: isoflurane, fentanyl, TEA (n=25) | Premedication: midazolam Induction:propofol, fentanyl, cis- atracurium, Maintenance: propofol, fentanyl, TEA (n=25) | alveolar and
plasma
cytokine
level
(interleukin
8, tumor
necrosis
factor alpha) | arterial blood
gas and
respiratory
parameters,
postoperative
morbidity | | | Mazoti ⁴⁹ | 2013 single ASA I adults, scheduled for elective otorhinological surgery >120 min | | | smokers, alcoholics, obese,
infection/inflammatory diseases, any
medication or radiation therapy within last 30
days | Premedication: n/s
Induction:propofol,
fentanyl, rocuronium,
Maintenance:
isoflurane, fentanyl
(n=16) | Premedication: n/s
Induction:propofol,
fentanyl, rocuronium,
Maintenance: propofol,
fentanyl, (n=18) | plasma pro-
inflammatory
cytokines | hemodynamic
data | | VOL: volatile anesthetics, TIVA: total intravenous anesthesia, ASA: American Society of Anesthesiology physical status, CAD: coroanry artery disease, RCT: randomized controlled trial, TEA: thoracic epidural anesthesia, ECG: electrocardiography, NMBA: neuromuscular blocking agent, n/s: not specified in study protocol.*: References are listed in table 5 in the supplemental digital content file 1. **Table 6: Detailed trial information continued** | Publi | ication d | etails | | Population | Inter | vention | Outcome | | | |-----------------------|--|--|--|---|--|---|---|---|--| | Author* | Year | Centers | Inclusion criteria | Exclusion criteria | Treatment (VOL) | Control (TIVA or VOL) | Primary | Secondary | | | Meco ⁵⁰ | 2007 | single | undergoing elective coronary artery bypass grafting elevated troponin I concentration with h before surgery, unstable angina, and within 24 h before surgery, hemodyng instability with the need for medical of mechanical inotropic support, administration of adenosine-triphosp sensitive potassium channel agonists antagonist such as diazoxide, nicora sulfonylurea, or theophylline, left mai disease, reintervention, preoperative values of creatinine > 1.7 mg/dl, chro obstructive pulmonary disease, age 70 years, preoperative ejection fracti inferior to 40%, preoperative hepatop emergencies | | Premedication: n/s
Induction: propofol,
midazolam, fentanyl,
pancuronium,
Maintenance:
desflurane, propofol,
midazolam, fentanyl
(n=14) | Premedication: n/s
Induction: propofol,
midazolam, fentanyl,
pancuronium,
Maintenance: propofol,
midazolam, fentanyl
(n=14) | cardiac
troponin I and
N-terminal
prohormone
of brain
natriuretic
peptide level | tissue doppler
imaging data,
hemodynamic
data | | |
Ndoko ⁵¹ | 2007 | single patients scheduled for elective cardiac surgery with CPB acute myocardial infarc confirmed endochemodynamic in support, severe leading and scheduled for or nitric oxide do or implantation or implantation of devices, emerge acute myocardial angina, or recent myocardial infarc confirmed endochemodynamic in support, severe leading to scheduled for or nitric oxide do or implantation implan | | consumption of sulfonylurea medications or nitric oxide donors, heart transplantation or implantation of ventricular assistance devices, emergency cardiac surgery with acute myocardial ischemia, unstable angina, or recent (<6 weeks) documented myocardial infarction, suspected or confirmed endocardial sepsis, preoperative hemodynamic instability requiring inotropic support, severe hepatic disease resulting from right ventricular dysfunction | Premedication: hydroxyzine Induction: propofol, sufentanil, pancuronium, Maintenance: desflurane, propofol, sufentanil (n=128) | Premedication: hydroxyzine Induction: propofol, sufentanil, pancuronium, Maintenance: desflurane, propofol, sufentanil (n=124) | postoperative
dobutamine
requirements | cardiac
troponin I
level,
postoperative
morbidity | | | Parsons ⁵² | patients preexisting neurological disease, pregnancy, preoperative medication affecting central nervous system, participant in other trial within 28 day before surgery, Left ventricular ejection preexisting neurological disease, pregnancy, preoperative medication affecting central nervous system, participant in other trial within 28 day before surgery, Left ventricular ejections. | | pregnancy, preoperative medication affecting central nervous system, participant in other trial within 28 days before surgery, Left ventricular ejection fraction < 35%, packed cell volume < 25%, unstable cardiovascular status | Premedication: morphine, hyoscine Induction: thiopental, fentanyl, pancuronium, Maintenance: desflurane, fentanyl (n=25) | Premedication: morphine, hyoscine Induction: thiopental, fentanyl, pancuronium, Maintenance: midazolam, fentanyl (n=25) | not defined | hemodynamic,
anesthestic
and surgical
data | | | VOL: volatile anesthetics, TIVA: total intravenous anesthesia, ASA: American Society of Anesthesiology physical status, CPB: cardiopulmonary bypass.*: References are listed in table 5 in the supplemental digital content file 1. **Table 6: Detailed trial information continued** | Publi | ication d | etails | | Population | Inter | vention | Outcome | | | | |--|-----------|---|---|--|--|---|---|--|--|--| | Author* | Year | Centers | Inclusion criteria | Exclusion criteria | Treatment (VOL) | Control (TIVA or VOL) | Primary | Secondary | | | | Piriou ⁵³ | 2007 | dual | patients (18-79 years) undergoing elective coronary artery bypass grafting | left ventricular ejection fraction <40%, treatment with oral hypoglycaemic sulfamide (antagonist of K _{ATP} channels), and nicorandil (agonist of K _{ATP} channels) within 5 days before surgery, emergency surgery, myocardial infarction, or clinical angina within 7 days before surgery, history of serious adverse event, or serious allergy, or any contraindication to sevoflurane, propofol, midazolam or opioids, and major coagulation disorders | Premedication: hydroxyzine Induction:propofol, sufentanl, cis- atracurium, Maintenance: sevoflurane, propofol, sufentanil (n=36) | Premedication: hydroxyzine Induction:propofol, sufentanl, cis- atracurium, Maintenance: propofol, sufentanil (n=36) | cardiac
troponin I
level | hemodynamic
data and
tissular
enzymes | | | | Rex ⁵⁴ | 2009 | multicent
er | ASA I-III patients
(20-65 years)
undergoing 2-5 h
GA with NMBA
use for surgery | neuromuscular disorder affecting NMB; anatomical malformation that predicts difficult intubation; history of malignant hyperthermia, significant renal dysfunction, or allergy to medications used during general anesthesia; concurrent use of medications known to interfere with NMBAs (e.g., antibiotics anticonvulsants, magnesium salts); and women who were pregnant, breastfeeding, or of childbearing potential and not using an adequate method of contraception | Premedication: n/s
Induction: propofol,
opioids n/s,
rocuronium,
Maintenance:
sevoflurane, opioids
n/s (n=26) | Premedication: n/s
Induction: propofol,
opioids n/s,
rocuronium,
Maintenance:
sevoflurane, opioids n/s
(n=25) | time to
recovery of
train of four | clinical effect
of
sugammadex | | | | Royse ⁵⁵ 2011 single patients >18years scheduled for elective CABG under CPB without add. procedure, able to sufficiently speak english | | >18years
scheduled for
elective CABG
under CPB
without add.
procedure, able
to sufficiently | dialysis dependent renal failure, liver transaminases more than 1.5 times normal, pre-existing diagnosis of schizophrenia, dementia, recent stroke, known disorder affecting cognition, severe anxiety states, recent alcohol abuse or a history of chronic opioid or other psychotropic drug use | Premedication: n/s
Induction: midazolam,
fentanyl, rocuronium,
Maintenance:
sevoflurane, fentanyl
(n=91) | Premedication: n/s
Induction: midazolam,
fentanyl, rocuronium,
Maintenance: propofol,
fentanyl (n=89) | postopertive
cognitive
dysfunction | postoperative
morbidity | | | | VOL: volatile anesthetics, TIVA: total intravenous anesthesia, ASA: American Society of Anesthesiology physical status, GA: general anesthesia, NMBA: neuromuscular blocking agent, n/s: not specified in study protocol, CABG: coronary artery bypass graft, CPB: cardiopulmonary bypass, K_{ATP}: adenosine triphosphate dependent potassium channels.*: References are listed in table 5 in the supplemental digital content file 1. **Table 6: Detailed trial information continued** | Publi | cation d | etails | | Population | Interv | ention | 0 | utcome | |------------------------------|----------|------------------|--|--|--|---|---------------------------------------|--| | Author* | Year | Centers | Inclusion criteria | Exclusion criteria | Treatment (VOL) | Control (TIVA or VOL) | Primary | Secondary | | Schoen ⁵⁶ | 2011 | single | patients
undergoing
elective cardiac
surgery with CPB | age below 18 yr, overt neurological diseases or dementia, significant stenosis of the carotid arteries, pregnancy, contraindications for sevoflurane, insufficient knowledge of the German language, and emergency indication | Premedication: n/s
Induction:etomodate,
sufentanil,
pancuronium,
Maintenance:
sevoflurane, propofol,
remifentanil (n=59) | Premedication: n/s Induction:etomodate, sufentanil, pancuronium, Maintenance: propofol, remifentanil (n=60) | cognitive
function | postoperative
morbidity, cardiac
troponin I, creatine
kinase, myocardial
fraction of creatine
kinase, anesthesia
and surgical data | | Searle ⁵⁷ | 1996 | Multi-
center | elective CAPB,
ASA III-IV, NYHA
I-II | significant valvular disease, , ejection fraction<30%, uninterpretible ECG (Left bundle branch block, atrioventricular block II and III), childbearing potenital, drug and alcohol abuse | Premedication:
diazepam, morphine
Induction:midazolam,
fentanyl, vecuronium,
Maintenance:isoflurane,
fentanyl (n=133) | Premedication: diazepam, morphine Induction:midazolam, fentanyl, vecuronium, Maintenance: sevoflurane, fentanyl (n=140) | not defined | hemodynamic
parameters,
myocardial
ischemia detected
by ECG | | Slogoff ⁵⁸ | 1989 | single | elective CABG,
21-75 age | previous cardiac operation,
emergency procedure, additional
procedure to CABG,
severe
systemic non-cardiac disease other
than diabetes, hypertension, history
of allergy to any drug that might be
administered, preop ECG diagnosis
of ischemia (left bundle branch
block) or failure to obtain consent | Premedication: n/r
Induction:diazepam,
fentanyl, pancuronium,
Maintenance: isoflurane
(n=253) | Premedication: n/r
Induction:diazepam,
fentanyl, pancuronium,
Maintenance: high dose
sufentanil (n=254) | not defined | intraoperative ischemia, intraoperative hemodynamic data, postoperative morbidity | | Song, J-
C. ⁵⁹ | 2010 | single | block) or failure to obtain consent ASA physical status I/II/III therapies (cryosurgery or radiofrequency ablation), prior liver resection for donation or scheduled resection not requiring inflow occlusion | | Premedication: midazolam, atropine Induction:sevoflurane, fentanyl, cis-atracurium, Maintenance: sevoflurane, TEA (n=50) | Premedication: midazolam, atropine Induction:propofol, fentanyl, cis-atracurium, Maintenance: propofol, TEA (n=50) | peak alanine
transaminase
level | hemodynamic data, liver enzymes (aspartate aminotransferase, total bilirubin, prothrombin time, albumin), postoperative morbidity | VOL: volatile anesthetics, TIVA: total intravenous anesthesia, ASA: American Society of Anesthesiology physical status, CABG: coronary artery bypass graft, CPB: cardiopulmonary bypass, NYHA: New York Heart Association classification, TEA: thoracic epidural anesthesia, ECG: electrocardiography.*: References are listed in table 5 in the supplemental digital content file 1. **Table 6: Detailed trial information continued** | Publi | cation o | letails | | Population | Inter | vention | Ou | tcome | |------------------------------|--|---------|---|--|---|--|--------------------------------|---| | Author* | Year | Centers | Inclusion criteria | Exclusion criteria | Treatment (VOL) | Control (TIVA or VOL) | Primary | Secondary | | Song, J-
G. ⁶⁰ | years) scheduled for thoracotomy during surgery for lung and oesophageal cancer severe cardiovascular disease (NYHA III or IV), severe pulmonary disease, contraindications to epidural catheter placement (coagulopathy, infection or patient refusal) | | Premedication: n/s
Induction: etomidate,
opioids n/s, rocuronium,
Maintenance:
sevoflurane, TEA
(n=176) | Premedication: n/s Induction: etomidate, opioids n/s, rocuronium, Maintenance: propofol, remifentanil, TEA (n=177) | incidence of
post-
thoracotomy
pain
syndrome six
month after
surgery | anesthetic and surgical intraoperative data, postoperative morbidity, postoperative pain and analgesic use | | | | Soro ⁶¹ | 2012 | single | patients (>18
years)
scheduled for
elective CABG
and > 4 h of
postoperative
sedation | combined surgery, reintervention, valve dysfunction, preoperative troponin I more than 0.5 ng/ml, altered liver (serum aspartate transaminase or serum glutamate pyruvate transaminase concentration >150 IU/I) or kidney function (serum creatinine concentration >132mmol/I) and history of chronic alcoholism or neurological disease | Premedication: lorazepam Induction: etomidate, midazolam, fentanyl,cis-atracurium, Maintenance: sevoflurane, midazolam, remifentanil (n=36) | Premedication: lorazepam Induction: etomidate, midazolam, fentanyl, cisatracurium, Maintenance: propofol, midazolam, remifentanil (n=37) | cardiac
troponin I
level | myocardial
biomarkers,
hemodynamic
data,
postoperative
morbidity | | Story ⁶² | 2001 single patients for CABG Emergency surgery, valve surgery, obesity (body mass index >35 kg/m²), preoperative renal dialysis, lung disease treated with oral corticosteroids | | Premedication: papavaretum, scopolamine Induction: diazepam, fentanyl, pancuronium, Maintenance: isoflurane, fentanyl, morphine (n=120) | Premedication: papavaretum, scopolamine Induction: diazepam, fentanyl, pancuronium, Maintenance: propofol, fentanyl, morphine (n=120) | creatinine
level | urea levels | | | VOL: volatile anesthetics, TIVA: total intravenous anesthesia, ASA: American Society of Anesthesiology physical status, CABG: coronary artery bypass graft, NYHA: New York Heart Association classification, TEA: thoracic epidural anesthesia, ECG: electrocardiography, n/s: not specified.*: References are listed in table 5 in the supplemental digital content file 1. Table 6: Detailed trial information continued | Publi | cation d | etails | | Population | Inter | vention | Ou | tcome | |------------------|----------|------------------|---|---|--|--|--------------------------------|---| | Author* | Year | Centers | Inclusion criteria | Exclusion criteria | Treatment (VOL) | Control (TIVA or VOL) | Primary | Secondary | | Thomson
63 | 1991 | single | elective CABG,
LVEF >34% | BW>110kg, Hct<25%, 35°C>T>38°C, disease of central nervous system, chronic exposure to or abuse of alcohol or drugs, general anesthesia 7 days before surgery, adverse reaction to anesthetics or opioids, malignant hyperthermia, respiratory disease sufficient to alter inhaled anesthetic uptake, recent use of any experimental drug or device | Premedication: morphine im, scopolamine im, Induction: thiopental, fentanyl, pancuronium, Maintenance: isoflurane, midazolam, fentanyl, (n=20) | im, scopolamine im, lnduction: thiopental, pancuronium, nce: isoflurane, m, fentanyl, midazolam, fentanyl, (n=21) | | ecg
recordings,
hemodynamic
variables,
myocardial
ischemia
markers (CK,
CK-MB) | | Tritapepe
64 | 2007 | multi-
center | All subjects underwent isolated CABG and were eligible if referred for isolated elective coronary bypass surgery and were 18 yr of age. | CABG planned with the off-pump technique; any other surgical procedure during current admission; a Q-wave myocardial infarction in the preceding 6 weeks; valve insufficiency; active congestive heart failure; previous unusual response to an anesthetic; an experimental drug within 28 days before surgery; use of sulfonylurea, theophylline or allopurinol. | Premedication: diazepam, morphine, scopolamine, Induction: midazolam, fentanyl, pancuronium, Maintenance: desflurane, fentanyl (n=75) | Premedication: diazepam,
morphine, scopolamine,
Induction: midazolam,
fentanyl, pancuronium,
Maintenance: propofol,
fentanyl (n=75) | cardiac
troponin I
level | postoperative
morbidity,
hemodynmaic
data | | Xu ⁶⁵ | 2014 | single | elective open-
chest coagulation disorders, hepatic and thoracotomy for esophagectomy | | Premedication: n/r
Induction: sevoflurane,
remifentanil, cis-
atracurium, Maintenance:
sevoflurane, remifentanil
(n=20) | Premedication: n/r
Induction: propofol,
remifentanil, cis-
atracurium, Maintenance:
propofol, remifentanil
(n=20) | Not defined | hemodynamic
data | VOL: volatile anesthetics, TIVA: total intravenous anesthesia, ASA: American Society of Anesthesiology physical status, CABG: coronary artery bypass graft, ECG: electrocardiography, LVEF: left ventricular ejection fraction, CK: creatine kinase, CK-MB: myocardial fraction of creatine kinase, BW: body weigth, Hct: hemotocrit, T: temperature, n/r: not reported.*: References are listed in table 5 in the supplemental digital content file 1. **Table 6: Detailed trial information continued** | Publi | cation d | etails | | Population | Interv | vention | Outcome | | | | |------------------------|----------|---------|---
--|--|---|--|--|--|--| | Author* | Year | Centers | Inclusion criteria | Exclusion criteria | Treatment (VOL) | Control (TIVA or VOL) | Primary | Secondary | | | | Yildirim ⁶⁶ | 2009 | single | CABG | previous coronary or valve heart surgery, combined surgical procedures (valve repair etc), unstable angina, valve insuffiency, documented acute myocardial infarction within the previous 6 weeks, active congestive heart failure, hemodynmaic instability reqiureing medical or mechanical support, severe hepatic disease, renal insufficieny, severe chronic obstructive lung disease, or history of neurological disturbances | Premedication: diazepam
Induction: midazolam,
remifentanil, vecuronium,
Maintenance: isoflurane,
remifentanil (n=20) | Premedication: diazepam
Induction: propofol,
remifentanil, vecuronium,
Maintenance: propofol,
remifentanil (n=20) | not defined | hemodynamic data, cardiac troponin I, thiobarbiturate acid-reactive substance, nitrous oxide, glutathione peroxidase, superoxide dismutase levels | | | | Y00 ⁶⁷ | 2014 | single | insufficieny, severe chronic obstructive lung disease, or history of neurological disturbances valvular heart surgery pre-existing renal insufficiency (serum creatinine level >1.5mg/dl in men or >1.3mg/dl in women),36 older than 80 years, coronary artery occlusive disease, hepatic or pulmonary, | | Premedication: n/r
Induction: midazolam,
sufentanil, rocuronium,
Maintenance:
sevoflurane, sufentanil
(n=56) | Premedication: n/r
Induction: propofol,
sufentanil, rocuronium,
Maintenance: propofol,
sufentanil (n=56) | incidence of
acute kidney
injury | cystatin C,
interleukin 1,
interleukin 6,
tumor necrosis
factor alpha,
cardiac fraction
of creatine
kinase,
postoperative
morbidity | | | VOL: volatile anesthetics, TIVA: total intravenous anesthesia, CABG: coronary artery bypass graft, n/r: not reported.*: References are listed in table 5 in the supplemental digital content file 1. **Table 6: Detailed trial information continued** | Public | cation d | etails | Popu | lation | Interv | vention | Out | come | |-------------------------|----------|---------|--|---|---------------------------------------|--|-----------------------|--| | Author* | Year | Centers | Inclusion criteria | Exclusion criteria | Treatment (VOL) | Control (TIVA or VOL) | Primary | Secondary | | Zangrillo ⁶⁸ | 2011 | single | patients with a Lee index ≥2 scheduled for elective lung surgery and major peripheral vascular surgery, one-lung ventilation for lung (using either thoracotomic or thoracoscopic approach) or peripheral revascularization surgery, age> 18 years, written informed consent, and planned for general anesthesia | previous unusual response
to an anesthetic use of
sulfonylurea, theophylline,
or allopurinol | fentanyl, atracurium,
Maintenance: | Premedication: diazepam
Induction: thiopental,
fentanyl, atracurium,
Maintenance: sevoflurane,
fentanyl (n=44) | cardiac
troponin I | postoperative
morbidity and
mortality, | VOL: volatile anesthetics, TIVA: total intravenous anesthesia.*: References are listed in table 5 in the supplemental digital content file 1. Table 7: Detailed risk of bias assessment and conflict of interests | Publica
detai | | | | | | | | | Risk of I | Bias Assessm | nent | | | | | | | | |----------------------|------|--|-----------------|---|-----------|--|-----------------|--|-----------------|-----------------------------------|-------------------------------------|--|-------------|---|------------------------------|---------------------|-------------|-------| | Author* | Year | Conflicts of interest/ financial support | ger | quence
neration
ction bias) | conce | cation
ealment
ion bias) | stud | of participants,
by personnel
ormance bias) | asse | of outcome
ssment
ion bias) | Incomplete data
(attrition bias) | | re | Selective outcome eporting - primary outcome rition bias) | secondary outcome (attrition | | o | other | | Alvarez ¹ | 1990 | no specific statement | high
risk | randomized
by even/
uneven
days | high risk | randomized
by even/
uneven
days | high
risk | no blinding | high risk | no blinding | high
risk | no patient
lost to
follow-up | low
risk | all patients
survived | unclear
risk | not pre-
defined | low
risk | none | | Amr ² | 2010 | none
declared | unclear
risk | no specific statement | low risk | sealed
envelopes | unclear
risk | no specific statement | unclear
risk | no specific statement | low risk | no patient
lost to
follow-up | low
risk | only deaths reported | unclear
risk | not pre-
defined | low
risk | none | | Baki ³ | 2013 | no specific statement | unclear
risk | no specific statement | low risk | sealed
envelopes | unclear
risk | no specific statement | unclear
risk | no specific statement | unclear
risk | no specific statement | low
risk | only deaths reported | unclear
risk | not pre-
defined | low
risk | none | | Ballester | 2011 | none
declared | low risk | computer-
generated | low risk | sealed
envelopes | low risk | only surgeons
blinded, not
considered to
increase risk of
bias | unclear
risk | no specific statement | low risk | 2/40
excluded | low
risk | mortality of
all patients
reported | unclear
risk | not pre-
defined | low
risk | none | | Beck-S. ⁶ | 2012 | none
declared | low risk | computer-
generated,
stratified | low risk | concealed online | unclear
risk | no specific
statement | unclear
risk | no specific statement | low risk | 4/195
excluded,
handling of
missing
data
reported | low
risk | mortality of
all patients
reported | low risk | AEs pre-
defined | low
risk | none | | Beck-S. ⁵ | 2008 | grant by
manufacturer
(Abbott) | low risk | computer-
generated,
non-
stratified | low risk | sealed
envelopes | low risk | only surgeons
blinded, not
considered to
increase risk of
bias | unclear
risk | no specific statement | low risk | 6/70
excluded | low
risk | mortality of
all patients
reported | low risk | AEs pre-
defined | low
risk | none | | Bein ⁷ | 2005 | none
declared | unclear
risk | no specific statement | low risk | sealed
envelopes | unclear
risk | no specific statement | unclear
risk | no specific statement | low risk | 2/50
excluded | low
risk | no death
reported | unclear
risk | not pre-
defined | low
risk | none | ^{*:} References are listed in table 5 in the supplemental digital content file 1. Table 7: Detailed risk of bias assessment and conflict of interests continued | Publica
deta | | | | | | | | | | Risk of Bias Asse | esmant | | | | | | | | |-----------------------|------|--|-----------------|-------------------------------|------------------|--|-----------------|---|--------------------|---|-----------------|--|--------------|---|-----------------|---|-----------------|--| | Author* | Year | Conflicts
of
interest/
financial
support | gene | uence
eration
ion bias) | cond | ocation
cealment
ction bias) | particip
per | nding of
pants, study
rsonnel
mance bias) | Blindi
assessme | ng of outcome
nt (detection bias) | Incom | nplete data
tion bias) | o
re
p | elective
utcome
porting -
orimary
utcome
ition bias) | rep
seconda | ve outcome
orting -
ary outcome
tion bias) | , | other | | Bharti ⁸
| 2008 | no specific statement | unclear
risk | no specific statement | low
risk | sealed
envelopes | unclear
risk | no specific statement | unclear risk | no specific statement | unclear
risk | no specific statement | low
risk | only death reported | unclear
risk | not pre-
defined | low risk | none | | Biboulet ⁹ | 2012 | none
declared | unclear
risk | no specific statement | unclea
r risk | no specific statement | unclear
risk | no specific statement | unclear risk | no specific statement | low risk | 2/45
excluded | low
risk | mortality of all patients reported | low risk | AEs
predefined | low risk | none | | Bignami ¹⁰ | 2012 | none
declared | low risk | computer-
generated | low
risk | sealed
envelopes | low risk | participants
blinded to
intervention | low risk | outcome assesors
blinded | low risk | all patients
analyzed, ITT
analysis
performed | low
risk | mortality of
all patients
reported | low risk | main AEs
defined,
definition of
EPPC only
partially
reported | low risk | none | | Braz ¹¹ | 2013 | none
declared | unclear
risk | no specific statement | low
risk | sealed
envelopes | low risk | according to
clinicaltrials.g
ov,
participants
were blinded
to
intervention | low risk | according to clinicaltrials.gov, investigators were blinded to intervention | low risk | none lost to follow up | low
risk | all pateints
survived | low risk | no AE
obtained | low risk | none | | Cavalca ¹² | 2008 | no specific
statement | low risk | computer-
generated | low
risk | intra- operative investigato rs blinded to treatment until the morning of surgery and after enrollment | unclear
risk | no specific statement | unclear risk | no specific statement | low risk | 1/44
excluded | low
risk | all pateints
survived | low risk | no major AE
obtained | low risk | none | | Conzen ¹³ | 2003 | financial
support by
department
al grant | unclear
risk | no specific
statement | unclea
r risk | no specific
statement | unclear
risk | no specific
statement | unclear risk | no specific statement | low risk | no patient
excluded | low
risk | all patients
survived | unclear
risk | not pre-
defined | unclear
risk | no information
regarding
mechanical
ventilation
settings and
fluid therapy
is provided | ^{*:} References are listed in table 5 in the supplemental digital content file 1. Table 7: Detailed risk of bias assessment and conflict of interests continued | Publica
deta | | | | | | | | | | Risk of Bias Ass | essment | | | | | | | | |-------------------------------|------|--|-----------------|---|-----------------|--|-----------------|--|-----------------|---|-----------|---|-------------------|---|-----------------|---|-----------|---| | Author* | Year | Conflicts
of interest/
financial
support | gene | uence
eration
ion bias) | con | location
cealment
ction bias) | particip
per | nding of
pants, study
rsonnel
mance bias) | Blindi | ng of outcome
nent (detection
bias) | Incom | nplete data
tion bias) | o
re
F
o | elective
utcome
porting -
orimary
utcome
ition bias) | rep
seconda | ve outcome
orting -
ary outcome
tion bias) | , | other | | Crom-
heecke ¹⁴ | 2006 | no specific
statement | low risk | computer-
generated
random
code | low risk | "The participant
randomization
assignment
was concealed
in an envelope
until the start of
anesthesia." | unclear
risk | no specific
statement | unclear
risk | only one outcome assessor blinded | low risk | no patient excluded | low
risk | all patients
survived | unclear
risk | not pre-
defined | low risk | none | | De
Conno ¹⁵ | 2009 | financial
support by
institutional
grants and
grant by
manufacturer
(Abbott) | unclear
risk | no specific statement | unclear
risk | no specific
statement | unclear
risk | no specific statement | unclear
risk | no specific
statement | high risk | 16/70 patients excluded, due to intraoperative change of surgical procedure | low
risk | all patients
survived | low risk | pre-defined | low risk | none | | De Hert ²⁰ | 2009 | financial
support by
grants from
manufacturer
(Abbott,
Baxter, GSK) | low risk | computeris
ed block
randomisat
ion | unclear
risk | no specific
statement | unclear
risk | no specific statement | unclear
risk | no specific
statement | low risk | no patient excluded | low
risk | mortality of
all patients
reported | low risk | pre-defined | high risk | free choice of
the opioid and
NMBAs | | De Hert ¹⁷ | 2003 | financial
support by
governmental
grant | unclear
risk | no specific statement | low risk | sealed
envelopes | unclear
risk | no specific statement | unclear
risk | only one outcome assessor blinded | low risk | no patient excluded | low
risk | deaths
reported | low risk | not pre-
defined | low risk | none | | De Hert ¹⁶ | 2002 | financial
support by
governmental
grant | unclear
risk | no specific statement | low risk | sealed
envelopes | unclear
risk | no specific statement | unclear
risk | no specific statement | low risk | no patient excluded | low
risk | all patients
survived | low risk | pre-defined | low risk | none | | De Hert ¹⁸ | 2004 | none declared, financial support by institutional and departement al resources | low risk | computer-
generated
code | low risk | sealed
envelopes | unclear
risk | no specific
statement
regarding
blinding of
participants,
data
collectors
blinded | low risk | outcome assesors
blinded | low risk | no patient excluded | low
risk | mortality of
all patients
reported | low risk | pre-defined | low risk | none | ^{*:} References are listed in table 5 in the supplemental digital content file 1. GSK: GaxoSmithKline, NMBAs: neuromuscular blockers. Table 7: Detailed risk of bias assessment and conflict of interests continued | Publica
deta | | | | | | | | | | Risk of Bias Asse | essment | | | | | | | | |----------------------|------|--|-----------------|--------------------------------|-----------------|-----------------------------------|-------------------|--|-----------------|---|----------|---------------------------|--------------|---|-----------------|--|-----------------|---| | Author* | Year | Conflicts
of interest/
financial
support | gene | uence
eration
ion bias) | cond | ocation
cealment
tion bias) | participa
pers | ding of
ants, study
sonnel
nance bias) | | ng of outcome
ment (detection
bias) | | nplete data
tion bias) | o
re
r | elective
utcome
porting -
orimary
utcome
ition bias) | rep
seconda | ve outcome
orting -
ary outcome
tion bias) | | other | | De Hert | 2004 | none declared, financial support by institutional and departement al resources | low risk | computer-
generated
code | low risk | sealed
envelopes | unclear
risk | no specific
statement
regarding
blinding of
participants,
data
collectors
blinded | low risk | outcome assesors
blinded | low risk | no patient
excluded | low
risk | mortality of
all patients
reported | low risk | pre-defined | low risk | none | | Deegan ²¹ | 2010 | none
declared,
financial
support by
two
independent
research
grants | low risk | secure
web-based
system | low risk | secure web-
based
system | unclear
risk | no specific
statement | unclear
risk | no specific
statement | low risk | no patient
excluded | low
risk | all patients
survived | unclear
risk | not pre-
defined | unclear
risk | paravertebral
block intstead
of opioid in
TIVA group | | Eremeev 22 | 2011 | none
declared | unclear
risk | no specific
statement | unclear
risk | no specific
statement | high risk | no blinding | high risk | no blinding | low risk | no patients
excluded | low
risk | all patients
survived | unclear
risk | not pre-
defined, only
"serious
adverse
events
assessed 3
days after
surgery, at
discharge, 30
days and one
year after
surgery"
according to
clinicaltrials.g | unclear
risk | different
duration of
surgical
procedures
between
groups | ^{*:} References are listed in table 5 in the supplemental digital content file 1. Table 7: Detailed risk of bias assessment and conflict of interests continued | Publica
deta | | | | | | | | | | Risk of Bias Ass | essment | | | | | | | |
------------------------|------|--|-----------------|---|----------|-----------------------------------|-------------------|--|-----------|--|-----------------|---|-------------------|---|-----------------|---|-----------------|--| | Author* | Year | Conflicts
of interest/
financial
support | gene | uence
eration
ion bias) | cond | ocation
cealment
tion bias) | participa
pers | ding of
ants, study
sonnel
nance bias) | Blindi | ng of outcome
nent (detection
bias) | Incom | plete data
tion bias) | o
re
F
o | elective
utcome
porting -
orimary
utcome
ition bias) | rep
seconda | ve outcome
orting -
ary outcome
tion bias) | | other | | Flier ²³ | 2010 | none declared, financial support by grant from the European Association of Cardio- Thoracic Anaesthesiol ogists and departement al funds | unclear
risk | no specific
statement | low risk | sealed
envelopes | low risk | participants
and data
collectors
blinded to
intervention | low risk | outcome assesors
blinded | unclear
risk | no patient
lost to follow-
up, in 13/100
patients the
intervention
was
discontinued | low
risk | all patients
survived | unclear
risk | not pre-
defined | low risk | none | | Fräßdorf ²⁴ | 2009 | financial
support from
manufacturer
(Abbott) and
governmental
grant | unclear
risk | no specific statement | low risk | sealed
envelopes | low risk | participants
and data
collectors
blinded to
intervention | low risk | outcome assesors
blinded | low risk | no patient excluded | low
risk | all patients
survived | unclear
risk | not pre-
defined | low risk | none | | Fudickar ²⁵ | 2014 | one author
received
lecture fees
from Abbvie | low risk | block
randomizat
ion,
selfmade | low risk | sealed
envelopes | high risk | no blinding reported | high risk | one outcome
assesor was
blindend to the
primary otcome of
the trial, no further
blinding reported | low risk | no patient excluded | low
risk | all patients
survived | unclear
risk | not pre-
defined | high risk | ischemic pre-
conditioning
was
performed in
control group
in addition to
TIVA | | Garcia ²⁶ | 2005 | financial
support from
manufacturer
(Abbott) | unclear
risk | no specific
statement | low risk | sealed
envelopes | unclear
risk | no specific
statement
regarding
blinding of
participants,
studypersonn
el was
blinded | low risk | outcome assesors
blinded | low risk | no patient excluded | low
risk | mortality of
all patients
reported | unclear
risk | not pre-
defined | unclear
risk | no information
regarding
mechanical
ventilation
settings and
fluid therapy
is provided | ^{*:} References are listed in table 5 in the supplemental digital content file 1. Table 7: Detailed risk of bias assessment and conflict of interests continued | Publica
deta | | | | | | | | | | Risk of Bias Asso | essment | | | | | | | | |-------------------------------|------|---|-----------------|---|-----------------|-----------------------------------|-------------------|--|-----------------|---|-----------|---|--------------|--|-----------------|---|-----------------|--| | Author* | Year | Conflicts
of interest/
financial
support | gene | uence
eration
ion bias) | cond | ocation
cealment
tion bias) | participa
pers | ding of
ants, study
sonnel
ance bias) | Blindii | ng of outcome
nent (detection
bias) | Incom | iplete data
tion bias) | o
re
p | elective utcome porting - primary utcome ition bias) | rep
seconda | ve outcome
orting -
ary outcome
tion bias) | , | other | | Gasz-
ynski ²⁷ | 2011 | financial
support by
governmental
grant | unclear
risk | no specific
statement | high risk | 100 patients included, but only complete data from 81 patients is reported, without further specification why | low
risk | all patients
survived | unclear
risk | not pre-
defined | unclear
risk | no information
regarding
mechanical
ventilation
settings and
fluid therapy
is provided | | Godet ²⁸ | 1990 | none
declared | unclear
risk | no specific
statement | unclear
risk | no specific statement | unclear
risk | no specific
statement | unclear
risk | no specific
statement | low risk | no patient excluded | low
risk | mortality of
all patients
reported | high risk | not pre-
defined,
PPCs only
for patients
who died
reported | high risk | systemic
nitroprussid
infusion in the
control group | | Gravel ²⁹ | 1999 | none
declared | unclear
risk | block
randomizat
ion 3:3, not
further
specified | low risk | sealed
envelopes | unclear
risk | only
participants
blinded to
intervention | high risk | outcome assessor
not blinded | low risk | no patient excluded | low
risk | all patients
survived | unclear
risk | not pre-
defined | low risk | none | | Guarra-
cino ³⁰ | 2006 | Provision of
Desflurane
for free by
manufacturer
(Baxter) | low risk | computer-
generated
list | low risk | sealed
envelopes | low risk | participants
and data
collectors
blinded to
intervention | low risk | outcome assesors
blinded | low risk | no patient excluded | low
risk | mortality of
all patients
reported | low risk | pre-defined | low risk | none | | Helman ³¹ | 1992 | financial
support from
manufacturer
(Anaquest) | unclear
risk | no specific
statement | low risk | no patient
excluded | low
risk | mortality of
all patients
reported | unclear
risk | not pre-
defined | unclear
risk | no information
regarding
mechanical
ventilation
settings and
fluid therapy
is provided | ^{*:} References are listed in table 5 in the supplemental digital content file 1. Table 7: Detailed risk of bias assessment and conflict of interests continued | Publica
deta | | | | | | | | | | Risk of Bias Ass | essment | | | | | | | | |-----------------------|------|--|-----------------|--|-----------------|------------------------------------|-------------------|--|-----------------|--|-----------|---|---------------------|--|-----------------|---|-----------------|--| | Author* | Year | Conflicts
of interest/
financial
support | gene | uence
eration
ion bias) | cond | ocation
cealment
ction bias) | participa
pers | ding of
ants, study
sonnel
nance bias) | | ng of outcome
nent (detection
bias) | | nplete data
tion bias) | o
re
p
o | elective
utcome
porting -
orimary
utcome
ition bias) | rep
seconda | ve outcome
orting -
ary outcome
tion bias) | , | other | | Howie ³² | 1996 | none
declared | unclear
risk | no specific
statement | high risk | 6 patients
from TIVA
group
excluded due
to inability to
maintain
baseline
hemodynami
c stability | uncl
ear
risk | all patients
survived,
but severe
hypotensio
n occured
in the
excluded
patients | unclear
risk | not pre-
defined | unclear
risk | different
neuromuscula
r blocking
agents used | | Huang ³³ | 2011 | financial
support by
governmental
grant | low risk | computer-
generated
random
code | unclear
risk | no specific
statement | low risk | participants
and data
collectors
blinded to
intervention | low risk | outcome assesors
blinded | high risk | one patient was excluded due to severe intraoperative right coronary artery thrombosis, who died | low
risk | all patients
survived | unclear
risk | not pre-
defined | low risk | none | | Jovic ³⁴ | 2012 | financial
support by
governmental
grant | unclear
risk | "randomly
allocated" | unclear
risk | no specific statement | unclear
risk | no specific statement | unclear
risk | no specific
statement | low risk
| no patient
excluded,
only
isoflurane
and propfol
group for the
present
meta-
analysis
analysed | low
risk | all patients
survived | unclear
risk | not pre-
defined | unclear
risk | no information
regarding
mechanical
ventilation
settings and
fluid therapy
is provided | | Kendall ³⁵ | 2004 | financial
support by
intstitutional
funds | low risk | shuffled
envelopes | low risk | sealed
envelopes | unclear
risk | no explicit
statement,
only "single
blind"
reported | unclear
risk | no explicit
statement, only
"single blind"
reported | low risk | no patient
excluded,
only
isoflurane
and propfol
group for the
present
meta-
analysis
analysed | low
risk | all patients
survived | unclear
risk | not pre-
defined | low risk | none | ^{*:} References are listed in table 5 in the supplemental digital content file 1. Table 7: Detailed risk of bias assessment and conflict of interests continued | Publica
detai | | | | | | | | | | Risk of Bias Asso | essment | | | | | | | | |----------------------------|------|--|-----------------|---------------------------------------|-----------------|-----------------------------------|-------------------|---|-----------------|---|----------|---------------------------|-------------------|---|-----------------|---|-----------------|--| | Author* | Year | Conflicts
of interest/
financial
support | gene | uence
eration
ion bias) | cond | ocation
cealment
tion bias) | participa
pers | ding of
ants, study
sonnel
nance bias) | | ng of outcome
nent (detection
bias) | | iplete data
tion bias) | o
re
F
o | elective
utcome
porting -
orimary
utcome
ition bias) | rep
seconda | ve outcome
orting -
ary outcome
tion bias) | | other | | Kirov ³⁶ | 2007 | financial
support by
governmental
grants and
Pulsion
Medical
Systems
(provided
technical
support) | unclear
risk | only
"randomize
d"
statement | low risk | sealed
envelopes | unclear
risk | no specific
statement | unclear
risk | no specific
statement | low risk | no patient
excluded | low
risk | all patients
survived | unclear
risk | not pre-
defined | low risk | None | | Ko ³⁸ | 2010 | financial
support by
unrestricted
educational
institutional
grant | unclear
risk | no specific
statement | low risk | sealed
envelopes | unclear
risk | no specific
statement | low risk | outcome assesors
blinded | low risk | no specific statement | low
risk | all patients
survived | unclear
risk | not pre-
defined | unclear
risk | no data
regarding
mechincal
ventilation
settings
reported | | Ko ³⁷ | 2008 | none
declared | low risk | computer-
generated
list | unclear
risk | no specific statement | unclear
risk | no specific
statement | unclear
risk | no specific
statement | low risk | no patient excluded | low
risk | all patients
survived | unclear
risk | not pre-
defined | high risk | no analgesic
reported for
desflurane
group | | Kortekaas
³⁹ | 2014 | governmental
grant | unclear
risk | no specific
statement | low risk | sealed
envelopes | unclear
risk | patients were
blinded, no
statement
regarding
blinding of
study
personnel | unclear
risk | no statement regarding blinding | low risk | no patient excluded | low
risk | all patients
survived | unclear
risk | not pre-
defined | unclear
risk | nothing
reported
regarding
mechanical
ventilation
settings and
fluid
management | ^{*:} References are listed in table 5 in the supplemental digital content file 1. Table 7: Detailed risk of bias assessment and conflict of interests continued | Publica
detai | | | | | | | | | | Risk of Bias Asse | essment | | | | | | | | |-------------------------------|------|---|-----------------|---|-----------------|------------------------------------|-------------------|--|----------|---|-----------|---|--------------|---|-----------------|---|-----------------|---| | Author* | Year | Conflicts
of interest/
financial
support | gene | uence
eration
tion bias) | cond | ocation
cealment
ction bias) | participa
pers | ding of
ants, study
sonnel
aance bias) | | ng of outcome
ment (detection
bias) | | plete data
tion bias) | o
re
i | elective
utcome
porting -
orimary
utcome
ition bias) | rep
seconda | ve outcome
orting -
ary outcome
tion bias) | (| other | | Kotten-
berg ⁴⁰ | 2012 | none
declared | low risk | computer-
generated
list | low risk | sealed
envelopes | unclear
risk | no statement
reqarding
blinidn of
participants,
study
personnel
partially
blinded | low risk | outcome assesors
blinded | low risk | no patient excluded | low
risk | mortality of
all patients
reported | low risk | pre-defined | high risk | remote
ischemic
preconditioni
ng was used
in two groups
additionally | | Landoni ⁴¹ | 2007 | none
declared | low risk | computer-
generated
list | low risk | sealed
envelopes | low risk | participants
and data
collectors
blinded to
intervention | low risk | outcome assesors
blinded | low risk | no patient excluded | low
risk | mortality of all patients reported | low risk | pre-defined | low risk | None | | Lee, J. ⁴³ | 2012 | intstitutional
grant | low risk | computer
generated
list in
ACTRN
registered
protocol | low risk | sealed
envelopes | unclear
risk | no specific statement | low risk | outcome assesors
blinded | high risk | 10/58 patients 5 in each group) were excluded after randomizatio n due to incomplete data acquisition | low
risk | mortality of
all patients
reported | low risk | pre-defined | low risk | none | | Lee,M-
C. ⁴² | 2006 | intstitutional
grant | unclear
risk | "randomize
d" | unclear
risk | no specific
statement | unclear
risk | no specific
statement | low risk | outcome assesors
blinded | low risk | no patient
excluded | low
risk | deaths
reported | unclear
risk | not pre-
defined | unclear
risk | no data
reqarding
intraoperativ
e ventilation
and fluid
managemnt
shown | ^{*:} References are listed in table 5 in the supplemental digital content file 1. Table 7: Detailed risk of bias assessment and conflict of interests continued | Publica
deta | | | | | | | | | | Risk of Bias Asso | essment | | | | | | | | |----------------------------|------|---|-----------|---|-----------------|------------------------------------|-------------------|--|-----------------|---|----------|--------------------------|-------------------|---|-----------------|---|-----------------|--| | Author* | Year | Conflicts
of interest/
financial
support | gene | uence
eration
ion bias) | cond | ocation
cealment
ction bias) | participa
pers | ding of
ants, study
sonnel
nance bias) | | ng of outcome
ment (detection
bias) | | plete data
tion bias) | o
re
F
o | elective
utcome
porting -
orimary
utcome
ition bias) | rep
seconda | ve outcome
orting -
ary outcome
tion bias) | , | other | | Leung ⁴⁴ | 1991 | financial
support by
governmental
grants | high risk | "randomize
d" reported
but group
size was
unequal
(124 vs. 62
patients) | unclear
risk | no specific
statement | unclear
risk | no specific
statement | unclear
risk | no specific
statement | low risk | no patient excluded | high
risk | only
cardiac
deaths
reported | unclear
risk | not pre-
defined | high risk | no data
regarding
mechanical
ventilation
and fluid
management
reported,
high opioid
anesthesia | | Lindholm
45 | 2013 | institutional
and
departement
al funding,
First author
received
presentation
fees from
manufacturer
(Baxter) | low risk | block
randomizat
ion 1:1 | low risk | sealed
envelopes | unclear
risk | participants
not
blinded,
study
personnel not
blinded | low risk | outcome assesors
blinded | low risk | no patient excluded | low
risk | mortality of
all patients
reported | unclear
risk | not pre-
defined | unclear
risk | different
opioids used | | Lorsomra dee ⁴⁶ | 2006 | not reported | low risk | computer-
generated
list | low risk | sealed
envelopes | low risk | no specific
statement on
blinding of
participants,
but double-
blind trial
design;data
collectors
blinded to
intervention | low risk | outcome assesors
blinded | low risk | no patient
excluded | low
risk | mortality of
all patients
reported | low risk | pre-defined | low risk | none | ^{*:} References are listed in table 5 in the supplemental digital content file 1. Table 7: Detailed risk of bias assessment and conflict of interests continued | Publica
detai | | | | | | | | | | Risk of Bias Asso | essment | | | | | | | | |------------------------------|------|---|-----------------|--|----------|--|-------------------|--|----------|---|-----------------|--|--------------|--|-----------------|---|-----------------|---| | Author* | Year | Conflicts
of interest/
financial
support | gene | uence
eration
tion bias) | cond | ocation
cealment
ction bias) | participa
pers | ding of
ants, study
sonnel
aance bias) | | ng of outcome
ment (detection
bias) | | plete data
tion bias) | o
re
I | elective
outcome
porting -
orimary
outcome
rition bias) | rep
second | ve outcome
porting -
ary outcome
ition bias) | , | other | | Lurati
Buse ⁴⁷ | 2012 | financial
support by
instituional
grants and
manufacturer
(Abbott) | low risk | computer-
generated
list | low risk | sealed
envelopes | low risk | participants
and data
collectors
blinded to
intervention | low risk | outcome assesors
blinded | low risk | no patient excluded | low
risk | mortality of
all patients
reported | low risk | pre-defined | unclear
risk | 17/385 patients were erroneously randomized to the wrong group | | Mahmoud
⁴⁸ | 2011 | none
declared | low risk | computer-
generated
list | low risk | statistician
ensured
"proper
concealment" | low risk | participants
and data
collectors
blinded to
intervention | low risk | outcome assesors
blinded | low risk | no patient excluded | low
risk | all patients
survived | unclear
risk | not pre-
defined | low risk | none | | Mazoti ⁴⁹ | 2013 | none
declared | unclear
risk | no specific
statement | low risk | sealed
envelopes | low risk | no specific statement | low risk | outcome assesors
blinded | unclear
risk | 2/36 patients
excluded
after
enrollment
before
randomizatio
n, becuase
"critical data
were
missing" | low
risk | all patients
survived | unclear
risk | not pre-
defined | low risk | none | | Meco ⁵⁰ | 2007 | none
declared | low risk | "The randomisat ion manageme nt was delegated to a person unconnect ed to the clinical experiment ation" | low risk | sealed
envelopes | low risk | participants
and data
collectors
blinded to
intervention | low risk | outcome assesors
blinded | low risk | no patient excluded | low
risk | all patients
survived | unclear
risk | not pre-
defined | unclear
risk | no data
reqarding
intraoperativ
e ventilation
and fluid
managemnt
shown | ^{*:} References are listed in table 5 in the supplemental digital content file 1. Table 7: Detailed risk of bias assessment and conflict of interests continued | Publica
deta | | | | | | | | | | Risk of Bias Asso | essment | | | | | | | | |-----------------------|------|--|-----------------|---|-----------------|------------------------------------|-------------------|--|-----------------|---|-----------|--|---------------------|--|-----------------|--|-----------------|---| | Author* | Year | Conflicts
of interest/
financial
support | gen | uence
eration
ion bias) | cond | ocation
cealment
ction bias) | participa
pers | ding of
ants, study
sonnel
nance bias) | Blindi | ng of outcome
ment (detection
bias) | Incom | iplete data
tion bias) | o
re
F
o | elective
utcome
porting -
orimary
utcome
ition bias) | rep
seconda | ve outcome
orting -
ary outcome
tion bias) | (| other | | Ndoko ⁵¹ | 2007 | none
declared | unclear
risk | sequence
generation
not further
specified | low risk | sealed
envelopes | low risk | participants
and data
collectors
blinded to
intervention | low risk | outcome assesors
blinded | high risk | 28/280 patients were excluded from the analysis due to severe complications | uncl
ear
risk | mortality
only
reported
from the
patients
not
excluded
from
analysis | unclear
risk | not pre-
defined | unclear
risk | no data
reqarding
intraoperativ
e ventilation
and fluid
managemnt
shown | | Parsons ⁵² | 1994 | grant from
manufacturer
(Anaquest) | low risk | random
number
table | unclear
risk | no specific statement | unclear
risk | no specific statement | unclear
risk | no specific
statement | low risk | 1/51 patients,
excluded due
to equipment
failure | low
risk | all patients
survived | unclear
risk | not pre-
defined | low risk | none | | Piriou ⁵³ | 2007 | financial
support by
manufacturer
(Laboratoire
Abbott
France) | low risk | blocked
randomizat
ion
stratified by
center | low risk | sealed
envelopes | unclear
risk | no blinding,
but the
primary
outcome is
not likely to
be influenced | low risk | outcome assesors
blinded | low risk | 8/72 patients
excluded due
to protocol
deviations
(all
sevoflurane
group), but
data is
reported in
the intention-
to-treat
analysis | low
risk | all patients
survived | low risk | pre-defined | low risk | none | | Rex ⁵⁴ | 2009 | financial
support by
manufacturer
(Schering-
Plough) | | central
randomizat
ion list
system | unclear
risk | no specific statement | unclear
risk | no specific statement | low risk | outcome assesors
blinded | low risk | 1/51 patients
lost to follow-
up | low
risk | all patients
survived | low risk | not pre-
defined, but
this trial was
a safety
study and all
Aes and
SAEs
irregardless
of causation
were strictly
monitored | low risk | none | ^{*:} References are listed in table 5 in the supplemental digital content file 1. Table 7: Detailed risk of bias assessment and conflict of interests continued | Publica | | | | | | | | | | Risk of Bias Ass | essment | | | | | | | | |------------------------------|------|---|-----------------|--|----------|---|-------------------|--|-----------------|---|-----------------|--|-------------|--|-----------------|---|-----------------|--| | Author* | Year | Conflicts
of interest/
financial
support | gene | uence
eration
ion bias) | cond | ocation
cealment
ction bias) | participa
pers | ding of
ants, study
sonnel
ance bias) | Blindii | ng of outcome
nent (detection
bias) | Incom | nplete data
tion bias) | re
I | elective
utcome
porting -
orimary
utcome
rition bias) | rep
seconda | ve outcome
orting -
ary outcome
tion bias) | | other | | Royse ⁵⁵ | 2011 | investigator
initiated trial,
financial
support by
manufacturer
(Baxter) | low risk | computer-
generated
list | low risk | sealed
envelopes | low risk | participants
and data
collectors
blinded to
intervention | low risk | outcome
assesors
blinded | low risk | 3/182
patients lost
to follow-up | low
risk | mortality of
all patients
reported | low risk | pre-defined | low risk | None | | Schoen ⁵⁶ | 2011 | two authors
recieved
honoria for
lectures from
Coviedien,
financial
grant support
by
manufacturer
(Abbott) | low risk | multiple
randomizat
ion lists,
stratified | low risk | investigators
had no
access to the
randomizatio
n lists | low risk | participants
and data
collectors
blinded to
intervention | low risk | outcome assesors
blinded | low risk | 11/128 patients lost to follow-up, but relevant data for this meta- analysis of these patients is reported | low
risk | death
reported | low risk | pre-defined | low risk | none | | Searle ⁵⁷ | 1996 | financial
support by
manufacturer
(Abbott) | unclear
risk | block
randomizat
ion 1:1, no
statement
about
sequence
generation | low risk | sealed
envelopes | unclear
risk | no specific
statement | unclear
risk | only one outcome
assessor blinded | unclear
risk | 11/284
patients
excluded
from analysis
(different
reasons
mentioned) | low
risk | mortality of
all patients
reported | unclear
risk | not pre-
defined | unclear
risk | no data
regarding
mechincal
ventilation
settings
reported | | Slogoff ⁵⁸ | 1989 | none
declared | low risk | random
number
table | low risk | no specific
statement | unclear
risk | no specific
statement | unclear
risk | no specific
statement | low risk | no patient excluded | low
risk | deaths
reported | low risk | pre-defined | unclear
risk | no data
reqarding
intraoperative
ventilation
and fluid
managemnt
shown | | Song, J-
C. ⁵⁹ | 2010 | none
declared,
financial
support by
governmental
grant | low risk | computer-
generated
list | low risk | sealed
envelopes | unclear
risk | no specific statement | unclear
risk | no specific
statement | low risk | no patient
lost to follow-
up | low
risk | all patients
survived | low risk | pre-defined | low risk | none | ^{*:} References are listed in table 5 in the supplemental digital content file 1. Table 7: Detailed risk of bias assessment and conflict of interests continued | Publication details | | | | | | | | | | Risk of Bias Asso | essment | | | | | | | | |------------------------------|------|--|--|--|---|--------------------------|---|--|---|--|-------------------------------------|---|---|--|---|-------------------------------|-----------------|--| | Author* | Year | Conflicts
of interest/
financial
support | Sequence
generation
(selection bias) | | Allocation
concealment
(selection bias) | | Blinding of
participants, study
personnel
(performance bias) | | Blinding of outcome assessment (detection bias) | | Incomplete data
(attrition bias) | | Selective
outcome
reporting -
primary
outcome
(attrition bias) | | Selective outcome
reporting -
secondary outcome
(attrition bias) | | other | | | Song, J-
G. ⁶⁰ | 2012 | none
declared | low risk | computer-
generated
list | unclear
risk | no specific statement | unclear
risk | no specific
statement on
blinding of
participants,
data
collectors
blinded | low risk | outcome assesors
blinded | low risk | 13/366
patients lost
to follow-up
and 10/183
deaths within
six months | low
risk | deaths
reported | unclear
risk | not pre-
defined | low risk | None | | Soro ⁶¹ | 2012 | none
declared, no
financial
support
declared | low risk | random
number
table
generator | low risk | sealed
envelopes | low risk | participants
and study
personnel
blinded to
intervention | low risk | double blind
double dummy
design | low risk | 2/75 patients
excluded
because
surgery was
not carried
out (propofol
group) | low
risk | deaths
reported | low risk | pre-defined | low risk | none | | Story ⁶² | 2001 | financial
support from
manufacturer
(Abbott and
AstraZeneca) | low risk | random
number
table | low risk | sealed
envelopes | low risk | participants
and data
collectors
blinded to
intervention | low risk | outcome assesors
blinded | highr risk | 34/360
patients
excluded
from
intention-to-
treat analysis | uncl
ear
risk | one patient who died was excluded from analysis and the reason for that is unclear. The patient possibly died intraoperati vely. | low risk | pre-defined | low risk | none | | Thomson 63 | 1991 | none
declared | low risk | random
number
table
generator | unclear
risk | no specific
statement | unclear
risk | no specific
statement | unclear
risk | only one outcome
assessor blinded | low risk | no specific statement | low
risk | deaths
reported | unclear
risk | not pre-
defined | unclear
risk | no data
regarding
mechincal
ventilation
settings
reported | | Tritapepe
64 | 2007 | free provision
of desflurane
by
manufacturer
(Baxter) | low risk | computer-
generated
list | low risk | sealed
envelopes | low risk | participants
and data
collectors
blinded to
intervention | low risk | outcome assesors
blinded | low risk | no patient
lost to follow-
up | low
risk | mortality of
all patients
reported | low risk | daily
evaluation of
Aes | low risk | none | ^{*:} References are listed in table 5 in the supplemental digital content file 1. Table 7: Detailed risk of bias assessment and conflict of interests continued | Publication details | | | | Risk of Bias Assessment | | | | | | | | | | | | | | | |-------------------------|------|---|--|--------------------------------|---|---------------------|---|---|---|-----------------------------|-------------------------------------|--|---|--|---|---------------------|-----------------|--| | Author* | Year | Conflicts
of interest/
financial
support | Sequence
generation
(selection bias) | | Allocation
concealment
(selection bias) | | Blinding of
participants, study
personnel
(performance bias) | | Blinding of outcome assessment (detection bias) | | Incomplete data
(attrition bias) | | Selective
outcome
reporting -
primary
outcome
(attrition bias) | | Selective outcome
reporting -
secondary outcome
(attrition bias) | | other | | | Xu ⁶⁵ | 2014 | none
declared | unclear
risk | no specific statement | low risk | sealed
envelopes | unclear
risk | no specific statement | unclear
risk | no specific statement | low risk | no patient excluded | low
risk | deaths reported | unclear
risk | not pre-
defined | low risk | none | | Yildirim ⁶⁶ | 2009 | none
declared | low risk | computer-
generated
list | low risk | sealed
envelopes | low risk | participants
and data
collectors
blinded to
intervention | low risk | outcome assesors
blinded | low risk | no patient
lost to follow-
up | low
risk | all patients
survived | unclear
risk | not pre-
defined | unclear
risk | no data
reqarding
intraoperativ
e ventilation
and fluid
managemnt
shown | | Yoo ⁶⁷ | 2014 | none
declared | low risk | computer-
generated
list | low risk | sealed
envelopes | unclear
risk | blinding of
participants
not reported,
study
personnel
blinded | low risk | outcome assesors
blinded | low risk | no patient excluded | low
risk | all patients
survived | unclear
risk | not pre-
defined | low risk | none | | Zangrillo ⁶⁸ | 2011 | none
declared | low risk | computer-
generated
list | low risk | sealed
envelopes | low risk | participants
and data
collectors
blinded to
intervention | low risk | outcome assesors
blinded | low risk | 1/88 patients
lost to follow-
up | low
risk | mortality of
all patients
reported | unclear
risk | not pre-
defined | unclear
risk | no data
reqarding
intraoperativ
e ventilation
and fluid
managemnt
shown,
postoperativ
e
complication
s all
summarized | ^{*:} References are listed in table 5 in the supplemental digital content
file 1.