VOLATILE ANESTHETICS VERSUS PROPOFOL FOR CARDIAC SURGERY WITH CARDIOPULMONARY BYPASS: META-ANALYSIS OF RANDOMIZED TRIALS.

Alice Bonanni MD, Alessio Signori MD, PhD, Cristiano Alicino MD, PhD, Irene Mannucci MD, Maria Antonietta Grasso MD, Luigi Martinelli MD and Giacomo Deferrari MD, PhD.

SUPPLEMENTAL DIGITAL CONTENT FILE 6

Figure 6: Forest plot for the effect of volatile anesthetics versus propofol on post bypass cardiac index in adults undergoing cardiac surgery with cardiopulmonary bypass. Subgroups analysis: isolated coronary artery bypass graft versus isolated valve/concomitant surgery. Std. Mean difference: standardized mean difference. IV: inverse variance.

In this figure cardiac output was converted to cardiac index by dividing cardiac output by the mean value of body surface area reported in considered studies.

		olatile			opofol			Std. Mean Difference		Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
ISOLATED CABG										
De Hert et al. (i)	2.86	0.28	10	2.35	0.34	10	4.4%	1.57 [0.54, 2.60]	2002	_
De Hert et al. (ii)	2.68	0.28	30	2.08	0.38	15	5.4%	1.87 [1.13, 2.60]	2003	
De Hert et al. (iii)	3.2	0.46	160	2.42	0.48	80	6.9%	1.67 [1.36, 1.97]	2004	
De Hert et al. (iv)	3.21	0.45	50	2.57	0.58	50	6.6%	1.22 [0.80, 1.65]	2004	
Parker et al.	3.08	0.78	236	2.92	0.76	118	7.1%	0.21 [-0.02, 0.43]	2004	 •
Lorsomradee et al.	3.49	0.56	160	2.9	0.61	160	7.1%	1.01 [0.77, 1.24]	2006	-
Yildirim et al.	2.7	0.36	40	2.12	0.4	20	5.9%	1.53 [0.93, 2.14]	2009	
Huang et al.	2.68	0.3	30	2.5	0.4	30	6.3%	0.50 [-0.01, 1.02]	2011	-
Soro et al.	2.9	0.75	36	2.82	0.87	37	6.5%	0.10 [-0.36, 0.56]	2012	
Jerath et al.	2.9	0.7	67	2.5	0.5	74	6.8%	0.66 [0.32, 1.00]	2015	
Subtotal (95% CI)			819			594	62.9%	0.99 [0.60, 1.38]		•
Test for overall effect ISOLATED VALVE /		`		•						
Cromhecke et al.	3.2	0.8	15	2.9	0.78	15	5.5%	0.37 [-0.35, 1.09]	2006	
Jovic et al.	2.62	0.83	11	2.64	0.59	11	5.1%	-0.03 [-0.86, 0.81]	2012	
Yoo et al.	2.75	0.6	56	2.85	0.75	56	6.7%	-0.15 [-0.52, 0.22]	2014	
Hou et al.	2.6	0.8	45	2.7	0.6	45	6.6%	-0.14 [-0.55, 0.27]	2017	
Yang et al.	2.94	0.32	36	2.49	0.32	37	6.3%	1.39 [0.88, 1.91]	2017	
Oh et al.	2.5	0.4	78	2.55	0.6	78	6.9%	-0.10 [-0.41, 0.22]	2018	
Subtotal (95% CI)			241			242	37.1%	0.21 [-0.26, 0.68]		*
Heterogeneity: Tau ^z	= 0.27; C	hi = 2	9.36, df	f = 5 (P	< 0.00	01); I² =	83%			
Test for overall effec	t: Z = 0.89	P = 0	0.38)							
Total (95% CI)			1060			836	100.0%	0.70 [0.37, 1.04]		•
Heterogeneity: Tau ^z Test for overall effec					(P < 0.1	00001)	; I²= 91%		-	-2 -1 0 1 2