	No.
	Study
	Measure
	Results

	1
	(Hornero et al. 2005)
	AE
	AE increased with signal frequency, amplitude modulation, number of harmonics, lower SNR, stochastic harmonic variability, noise bandwidth, NOT with pure noise power

	2
	(M. Aboy et al. 2006)
	LZC
	LZC increased with signal frequency, amplitude modulation, lower SNR, stochastic harmonic variability, noise bandwidth, NOT with pure noise power or number of harmonics

	3
	(Hu, Gao, and Principe 2006)
	LZC
	LZC decreases with sequence length until saturation in simulations

	4
	(Mateo Aboy et al. 2007)
	SE
	SE increases with lower SNR, with frequency until saturation, decreases with number of harmonics

	5
	(Molina-Picó et al. 2011)
	AE, SE
	AE and SE can increase or decrease when spikes exist in the data depending on whether it is noise or oscillation dominated

	6
	(Cirugeda-Roldan et al. 2014)
	AE, SE, fuzzy entropy (FE)
	Entropy increases with more data excluded but still robust to distinguish between groups even at 50% data loss

	7
	(Rivolta et al. 2014)
	LZC
	LZC decreases with series length in sleep data

	8
	(Escudero, Ibáñez-Molina, and Iglesias-Parro 2015)
	SE, LZC
	Kuramoto model: SE and LZC decrease as connectivity strength k and global synchrony tau increase, but behaviour depends on noise

	9
	(Nagaraj and Balasubramanian 2017)
	LZC, effort to compress (ETC)
	For the logistic map, LZC and ETC slightly increase with time series length

	10
	(Amarantidis and Abásolo 2019)
	PE, SE, FE
	Similar to 1 and 4; also shows PE, SE, and FE depend on colour of the noise and increase for the logistic map and Lorenz system as they transition to chaos.
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. 1. Synthetic signals used in this study: (a) Chirp signal. (b)
Signal with growing number of harmonics. (c) Quasiperiodic signal
with different noise levels. (d) White Gaussian noise with step
increases in power. (e) Synthetic normal ECG. (f) Synthetic normal
ECG with baseline wander
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Fig. 5. Results of the tests performed to gain better understanding
ApEn and its interpretation. (a) Relationship between ApEn and signal
frequency, (b) ApEn and AM, (c) ApEn versus number of harmonics,
(d) ApEn versus SNR, () ApEn versus noise power, (f) ApEn versus
noise bandwidth, (F) ApEn versus stochastic variability of signal
harmonics, (h-i) ApEn versus noise bandwidth variability.
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Results of the tests performed to gain better understanding LZ and its
interpretation. (a) Relationship between LZ and signal frequency, (b) LZ
and amplitude modulation, (c) LZ versus number of harmonics, (d) LZ
versus SNR, (e) LZ versus noise power, (f) LZ versus noise bandwidth,

(9) LZ versus stochastic variability of signal harmonics, and (h) LZ
versus Noise bandwidth variability.
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The LZ complexity vs. the sequence length for (a) the constant sequence, (b)
sequence with period 2, (c) sequences with period 4, and (d) random
sequences. The vertical bars in (d) indicate the estimated standard errors of the
mean.




