Appendix 1. Literature Review Highlights With All Studies Published After 2005 Markov Model

Study	Effect Studied	Cohort	Mortality/Morbidity
Cardiovascular focus			
Laughlin-Tommaso, et al. Cardiovascular and metabolic morbidity after hysterectomy with ovarian conservation: a cohort study. Menopause 2017; 25 (5): $483-492^{15}$.	CAD, Stroke all stratified by ages less than or $=3536-50$, and >50	Olmstead County, MN women as part of Rochester Epi Project records linkage system.	Case control of HYS with ovarian conservation vs no surgery. Adjusted models: Age </=35 -CAD (coronary artery disease) HR 2.49 (1.39-4.47) p=0.002 -Congestive Heart Failure (CHD) HR 4.59 (1.32-15.94) $p=0.02$ -stroke 1.14 ($0.50-2.58$) $\mathrm{p}=0.75$ Age 36-50 -CAD HR 1.34 (1.07-1.68) $\mathrm{p}=0.01$ -CHF HR 0.63 (0.42-0.95) $\mathrm{p}=0.03$ -stroke HR 1.22 (0.88-1.67) Age >50 -CAD HR 1.15 (0.85-1.56) p=0.35 -CHF HR 0.84 (0.60-1.17) p=0.30 -stroke HR 0.80 (0.56-1.14) $\mathrm{p}=0.22$ See Table 2 in the main manuscript.
Lai et al. The risk of stroke after bilateral salpingo-oophorectomy at hysterectomy for benign diseases: A nationwide cohort study. Maturitas 2018; 114:27-33²4.	Stroke risk, all types and by subtype, by HYS vs HYS+BSO, stratified by age and postsurgery estrogen therapy	Taiwanese nationwide populationbased retrospective cohort study using insurance claims data	No significant association between BSO and risk of incident stroke or subtype of stroke. Women >50 years who underwent BSO and used estrogen postoperatively, risk of stroke decreased 64\% compared to HYS alone
Morbidity \& Mortality from Multiple Causes			
Rocca et al. Survival patterns after oophorectomy in premenopausal women: a population-based cohort study. Lancet oncology 2006; 7:821-82825.	Cancer incidence, vascular cause of death, neuro or mental health, respiratory, other causes	Mayo Clinic Cohort Study of Oophorectomy and Aging	Women w/ BSO <45 and no estrogen therapy had increased risk of cancers (esp estrogen related), non-cancer neuro or mental health, and total all cause.
Rivera et al. Increased cardiovascular mortality in early bilateral oophorectomy. Menopause 2009; 16(1):15-23 ${ }^{3}$.	CVD listed anywhere on death certificate	Mayo Clinic Cohort Study on Oophorectomy and Aging	Differences related to age at surgery, use of estrogen, and difference btw CVD listed as reason for death vs CVD listed anywhere on death certificate
Jacoby et al. Oophorectomy vs Ovarian conservation with Hysterectomy. Archives of Internal Medicine 2011; 171(8): 760-768 ${ }^{13}$.	CVD Hip fracture Cancer	Women's Health initiative Observational Study.	No significant increased risk of CVD in women w/ BSO vs hysterectomy alone (total fatal and non-fatal CHD HR $1.00, \mathrm{Cl}$ 0.85-1.18). BSO did not confer increased fracture risk (HR 0.83, CI 0.63-1.101) Women <40 at time of BSO had decreased breast cancer risk (HR $0.36 \mathrm{Cl} 0.14-0.951$).

Rush SK, MA X, Newton MA, Rose SL. A revised Markov Model evaluating oophorectomy at the time of benign hysterectomy: age 65 years revisited. Obstet Gynecol 2022;139.
The authors provided this information as a supplement to their article.
©2022 American College of Obstetricians and Gynecologists.

LaCroix, et al. Health Outcomes after Stopping Conjugated Equine Estrogens Among Postmenopausal Women with Prior Hysterectomy: A Randomized control trial. JAMA 2011; 305(13):1305-13145.	Primary: CHD and invasive breast cancer Global index of risks incl CHD, invasive breast cancer, stroke, pulmonary embolus, colorectal cancer, hip fracture, death	WHI EstrogenAlone Trial	Age differences seen in total MI by age group, with those using estrogen having lower risk. Age differences in colorectal cancer incidence by age and due to estrogen use (lower with estrogen use). Global index of risk was lower for younger women using estrogen.
Manson et al. Menopausal Hormone Therapy and Health Outcomes During the Intervention and Extended Poststopping Phases of the Women's Health Initiative Randomized Trials. Jama 2013; 310(13): 1353-13686.	Primary: CHD \& breast cancer Global Index: CHD, breast cancer, stroke, pulmonary embolus, colorectal cancer, endometrial cancer, hip fracture, death	Women's Health Initiative	During Intervention: In the hysterectomy arm with estrogen alone use (and BSO was performed in about 40% of those with hysterectomy, including the arm that got estrogen and the placebo arm): Stroke: HR 1.35 (1.07-1.70), p=0.01 Hip fracture: HR 0.67 ($0.46-0.96$), $p=0.03$ DVT: 1.48 (1.06-2.07) p=0.02 All Cardiovascular events: 1.11 (1.01-1.22) $\mathrm{P}=0.03$ Vertebral fracture: 0.64 (0.44-0.93) $\mathrm{p}=0.02$ All fracture: HR 0.72 (0.64-0.80) $\mathrm{p}<0.001$ In the intervention arm when age at randomization was used to stratify, then colorectal cancer, all-cause mortality, global index and total MI were significantly different by age. In follow-up, age groups remained significant for global index and total MI, where estrogen was protective at younger ages and seemed to be associated with greater risk later in life. Global index ages 50-59 HR 0.82 (0.68-0.98) Ages 60-69 HR 1.03 (0.92-1.15) Ages 70-79 HR 1.10 (0.97-1.25) $p=0.01$ Total MI ages 50-59 HR 0.60 (0.39-0.91) Ages 60-69 HR 1.03 (0.82-1.31) Ages 70-79 HR 1.25 (0.95-1.65) p=0.007
Parker et al. Long-term Mortality Associated with Oophorectomy compared with Ovarian Conservation in the Nurses' Health Study. Obstetrics \& Gynecology 2013; 121(4): 709-716 ${ }^{10}$.	Death from CHD, stroke, breast cancer, epithelial ovarian cancer, lung cancer, colorectal cancer, total cancer and all cause	Nurses' Health Study participants with prior hysterectomy	None of the p values in the multivariate analysis were significant for risk after hysterectomy comparing +/- BSO, except for breast cancer Breast cancer <50 yrs HR 0.82 (0.60-1.11) 50-59 yrs HR 1.19 (0.66-2.14) 60+ yrs HR NA All cause death HR 0.89 (0.69-1.15) p=0.05 Exposure to estrogen negated any trend toward worse outcomes after BSO for All cause Death

Rush SK, MA X, Newton MA, Rose SL. A revised Markov Model evaluating oophorectomy at the time of benign hysterectomy: age 65 years revisited. Obstet Gynecol 2022;139.
The authors provided this information as a supplement to their article. ©2022 American College of Obstetricians and Gynecologists.

			-no estrogen HR $1.41(1.04-1.92)$ -estrogen $1.05(0.94-1.17) \mathrm{p}=0.03$ Lung Ca -no estrogen HR $1.44(0.17-12.2)$ -estrogen HR $0.80(0.58-1.12)$ CHD -no estrogen $2.35(0.76-7.26)$ -estrogen $0.91(0.63-1.31) \mathrm{p}=0.02$ CVD -no estrogen HR $1.60(0.68-3.74)$ -estrogen HR $1.00(0.76-1.33) \mathrm{p}=0.01$
Gierach et al. Long-term Overall and Disease -specific Mortality Associated with Benign Gynecologic Surgery Performed at Different Ages. Menopause 2014; 21(6): 592-601 ${ }^{16}$.	Overall and disease specific mortality	52,846 Breast Cancer Detection and Demonstration Project FollowUp study participants	Multivariate analysis adjusted for BMI, smoking, hormone therapy, alcohol use and birth cohort. Among all women not stratified by age, BSO did not increase all-cause mortality risk: HR 1.01 (CI 0.96-1.04) By age: BSO at 35 HR 1.20, CI 1.08-1.34 By age 50 all-cause mortality NOT increased HYS w/o BSO also increased all-cause mortality at ages 35 and 40: -HR 35 yrs 1.10 CI 1.00-1.20 -HR 40 yrs 1.08 CI 1.01-1.15 BSO was associated with cancer in the following ways: Reduction in cancer deaths if performed by age 50: HR 0.89, CI 0.81-0.98; Age 55 HR 0.88, CI 0.80-0.97 BSO associated with increased risk of colorectal and pancreatic cancers, but only significantly at certain ages BSO increased non-cancer death risk with strongest association if BSO performed by age 35 -HR at 35 yrs $1.25 \mathrm{CI} 1.10-1.42$ Risk remained increased at age 55, but less so -HR at 55 yrs 1.08 CI 1.01-1.14 BSO associated with increased risk of death from CHD at all ages up to age 55, but attenuated as age increases at time of surgery HR 35 yrs 1.56 CI 1.29-1.89 HR 40 yrs 1.37 CI 1.19-1.58 HR 45 yrs 1.28 CI 1.14-1.43 HR 50 yrs $1.20 \mathrm{Cl} 1.08-1.32$ HR 55 yrs $1.10 \mathrm{Cl} 1.00-1.21$ Association with stroke not very clean by age, sometimes decreased and sometimes increased depending on age evaluated
Mytton et al. Removal of all ovarian tissue versus conserving ovarian tissue at time of hysterectomy in	All-cause mortality and specifically by	Premenopausal women undergoing	Deaths by the following: (after cox regression, all in favor of ov conservation btw 35-45)

Rush SK, MA X, Newton MA, Rose SL. A revised Markov Model evaluating oophorectomy at the time of benign hysterectomy: age 65 years revisited. Obstet Gynecol 2022;139.
The authors provided this information as a supplement to their article.

premenopausal patients with benign disease: study using routine data and data linkage. The British Medical Journal 2017; 356:j372 http://dx.doi.org/10.1136/bng,j372²6.	heart disease, cancer and suicide.	benign HYS between 35 and 45 years, with ovarian conservation vs	-All cause death HR 0.64 (0.55-0.73) p<0.001 -Heart disease death HR 0.50 (0.28-0.90) p=0.02 -cancer death HR 0.54 (0.45-0.65) p<0.001

Rush SK, MA X, Newton MA, Rose SL. A revised Markov Model evaluating oophorectomy at the time of benign hysterectomy: age 65 years revisited. Obstet Gynecol 2022;139.
The authors provided this information as a supplement to their article.
©2022 American College of Obstetricians and Gynecologists.
Page 4 of 37

Cancer Incidence			
Gaudet et al. Oophorectomy and Hysterectomy and Cancer Incidence in the Cancer Prevention Study-II Nutrition Cohort. Obstetrics \& Gynecology 2014: 123(6): 1247- 1255^{23}.Cancer incidence	Prospective observational	HYS with BSO before 45 27\% risk reduction, NNT 333 HYS without BSO before 45 with 20\% risk reduction, NNT 450	
Reoperation Risk			
Casiano et al. Risk of Oophorectomy after Hysterectomy. Obstetrics \& Gynecology 2013; 121(5): 1069-10747.	Reoperation after HYS	Rochester Epi Project data retrospective	Incidence of oophorectomy 3.5\% at 10-year follow-up, 6.2\% at 20-year follow up, 9.2\% at 30-year follow up

BSO bilateral salpingo-oophorectomy, CAD coronary artery disease; CVD cardiovascular disease, CHD coronary heart disease, CHF congestive heart failure, HR hazard ratio, HRT hormone replacement therapy, HYS hysterectomy, OR odds ratio

Summary:
The present document is rendered from \mathbf{R} markdown, which interleaves text and chunks of \mathbf{R} code to reproduce computations reported in the main manuscript.

Our calculations model survival rates for women who have received either hysterectomy, HYS, or HYS in combination with bilateral salpingo-oophorectomy, BSO. For either surgical treatment (HYS or HYS + BSO) performed at one of various ages, we simulate a large synthetic cohort of treated women forward through annual or five-year time increments, keeping track of the proportion who die by various causes. Transition rates for finite-state, discrete time Markov chain are derived from hazard ratios obtained through literature review. Simulation under any fixed transition rates leads to various endpoints, such as the proportion of each cohort that remains alive by age 80 . We assess uncertainty in the survival rates by propogating hazard-ratio uncertainty. Specifically, we use reported confidence intervals on hazard ratios to seed a literature posterior distribution for a Bayesian analysis. We repeatedly sample hazard ratios from this distribution and simulate cohort dynamics from each parameter setting in order to obtain uncertainty assessments on each survival endpoint.

The intervention HYS + BSO before age 50 will likely result early menopause and thus lack of estrogen. As an add-on calculation, we also consider the scenario when estrogen therapy is involved where we apply the same simulation sematics to cohorts with HYS + BSO + estrogen therapy and specifically receiving the surgical treatment before age 50 .

Model structure:

Base matrix

Primary calculations are based upon an 8-state Markov chain whose states are: (1) dead by coronary heart disease, (2) dead by stroke, (3) dead by breast cancer, (4) dead by ovarian cancer, (5) dead by lung cancer, (6) dead by colorectal cancer, (7) dead by other natural causes or other risk factors, and (8) alive. An entire cohort starts in state 8 and evolves stochastically over time by elementary Markovian rules (note that states $1-7$ are absorbing). Initially we consider a cohort incrementing in steps of 5-years,
starting at $t_{0}=45$ and continuing for $n=7$ steps until the cohort reaches age $t_{n}=80$.
For $i=1,2, \cdots, n$, let M_{i} be the 8×8 transition matrix giving probabilities that a healthy woman age t_{i-1} (i.e., in state 8) will be in any of the 8 states 5 years later.

$$
\left(\begin{array}{ccccc}
1 & 0 & \ldots & & 0 \\
0 & 1 & \ldots & & 0 \\
& & & & \ldots \\
0 & 0 & \ldots & 1 & 0 \\
p_{i}^{1} & p_{i}^{2} & \ldots & p_{i}^{7} & p_{i}^{8}
\end{array}\right)
$$

Rush SK, MA X, Newton MA, Rose SL. A revised Markov Model evaluating oophorectomy at the time of benign hysterectomy: age 65 years revisited. Obstet Gynecol 2022;139.
The authors provided this information as a supplement to their article.
©2022 American College of Obstetricians and Gynecologists.
Page 5 of 37

The first 7 entries of the last row are probabilities that a woman of age t_{i-1} will die by a given cause by age t_{i}. The survival probability is the complement, $p_{i}^{8}=1-\sum_{j=1}^{7} p_{i}^{j}$. To set these matrices numerically, we pulled survival data from the Centers for Disease Control (CDC) https://gis.cdc.gov/Cancer/USCS/DataViz.html, which we did on 12/13/2019. In some cases, one-year rather than five-year survival rates were available. We use the method proposed in Parker et.al, 2005, to convert one-year rates to five-year rates: $R_{5}=1-\exp \left(-5 R_{1}\right)$, where R_{1} and R_{5} are one-year and five-year respectively. We expect a proportion R_{1} of the cohort to have died by that risk factor over one year; thus, over five years, we expect a proportion $\left(1-R_{1}\right)^{5}$ proportion to not have died by that risk factor, which is approximately $1-R_{1} \approx \exp (-R 1)$ for small R_{1}, and thus the approximation: $R_{5}=1-\exp \left(-5 R_{1}\right)$.

```
# base transition matrices
# time 45-80, 5 year cycle
# convert 1-year rate to 5-year rate: 1 - exp(-5x),where x is the 1-year mortality rate
# as in Parker 2005
conv = function(x){
    return(1 - exp(-5 * x))
}
# ovarian cancer
# mortality rate of ovarian cancer for women who have not gone through HSY or BSO, 5-year
cycle starting at 45, 45-49,50-54,...,75-79
oc = c(0.000253,0.000455,0.000689,0.00102,0.0014,0.0018,0.0023)
# breast cancer
# mortality rate of breat cancer for referent women
bc = c(0.001,0.0016,0.0022,0.0028,0.0034,0.0042,0.0052)
# Lung cancer
# mortality rate of lung cancer for referent women, 1-year rate, then converting to 5-yea
r rate
lc = c(0.85,2.4,5.5,8.8,13.2,19.8,26.6) / 10000
lc = conv(lc)
# colo cancer
# mortality rate of colorectal cancer for referent women, 1-year rate, then converting to
5-year rate
cc = c(0.87,1.42,2.05,2.8,3.9,4.9,7.14) / 10000
cc = conv(cc)
# Coronary heart disease (CVD)
chd = c(0.00094,0.0017,0.0029,0.005,0.0082,0.014,0.026)
```

Rush SK, MA X, Newton MA, Rose SL. A revised Markov Model evaluating oophorectomy at the time of benign hysterectomy: age 65 years revisited. Obstet Gynecol 2022;139.
The authors provided this information as a supplement to their article.
©2022 American College of Obstetricians and Gynecologists.
Page 6 of 37

```
# Stroke
st = c(0.000496,0.000732,0.001063,0.00168,0.003,0.0056,0.011)
```

\# in preliminary calculations we considered hip fracture, but not in the final calculatio
ns
\# hip fracture
\# using parker's data, because no where else would have hip fracture related to death
$h f=c(0.012,0.019,0.028,0.267,0.508,1.224,2.108) / 100$
\# Other
\# mortality rate of other causes
ot $=c(0.95,1.34,2.03,2.94,4.39,5.98,8.58) / 100$
\# 7 states: ovarian cancer, coronary heart disease, stroke, breast cancer, Colorectal can
cer, Lung Cancer, other, health
\# from 45-80
\# there is in total 7 5-year cycles from 45 to 80
nState $=7$
\# hip fracture excluded
\# Lists of vectors of mortality rates attributed to different factors at each cycle.
vc = list()
for(i in 1:nState)\{
currentCycle $=$ paste $(45+5 *(i-1), 45+5 * i, s e p="-")$
$\mathrm{vc}[$ [currentCycle]] $=\mathrm{c}$ (oc[i], chd[i],st[i],bc[i],cc[i],lc[i],ot[i])
\}
\# we do not consider the hip fracture as a risk factor for death
\# commment out those codes for records
\# hip fracture included
\# vc_all = list()
\# for(i in 1:nState)\{
\# currentCycle = paste $(45+5 *$ (i - 1), $45+5$ * i,sep = "-")
\# vc_all[[currentCycle]] = c(oc[i],chd[i],st[i],bc[i],cc[i],lc[i],hf[i],ot[i])
\# \}
\# base transition matrices for health women, from 45-80. 5-year as a cycle
getBase $=$ function(vec)\{
$\mathrm{n}=$ length(vec)
tmpM $=\operatorname{diag}(\mathrm{n}+1)$
tmp $=\operatorname{rep}(0, \mathrm{n}+1)$
$\operatorname{tmp}[1: n]=\mathrm{vec}$
$\operatorname{tmp}[\mathrm{n}+1]=1-\operatorname{sum}(\operatorname{tmp}[1: \mathrm{n}])$

Rush SK, MA X, Newton MA, Rose SL. A revised Markov Model evaluating oophorectomy at the time of benign hysterectomy: age 65 years revisited. Obstet Gynecol 2022;139.
The authors provided this information as a supplement to their article.
©2022 American College of Obstetricians and Gynecologists.

```
    tmpM[n + 1,] = tmp
    return(tmpM)
}
base = list()
for(i in 1:nState){
    base[[names(vc)[i]]] = getBase(vc[[i]])
    colnames(base[[i]]) = c("Ovarian cancer","Coronary heart disease",
                            "Stroke","Breast cancer","Colorectal cancer","Lung cancer","Ot
hers","Alive")
    rownames(base[[i]]) = colnames(base[[i]])
}
# hip fracture included
# base_all = list()
# for(i in 1:nState){
# base_all[[names(vc_all)[i]]] = getBase(vc_all[[i]])
# colnames(base_all[[i]]) = c("Ovarian cancer", "Coronary heart disease",
# "Stroke", "Breast cancer", "Colorectal cancer", "Lung cancer","
hip fracture", "Others", "Alive")
# rownames(base_all[[i]]) = colnames(base_all[[i]])
# }
# a matrix combine the bottom row of the transition matrix over each cycle
# each row represents the probabilities of health women converting to different states.
mat = c()
for(i in 1:nState){
    mat = rbind(mat,base[[i]][8,])
}
rownames(mat) = names(vc)
```

The table below holds information from the base matrix for cohorts at various ages (rows). Each row holds the bottom row of the respective 8×8 transition matrix.
knitr::kable(mat, digits=3, caption="Eighth rows of base transition matrices, different a ges")

Eighth rows of base transition matrices, different ages

Ovarian cancer	Coronary heart disease	Stroke	Breast cancer	Colorectal cancer	Lung cancer	Others	Alive

Rush SK, MA X, Newton MA, Rose SL. A revised Markov Model evaluating oophorectomy at the time of benign hysterectomy: age 65 years revisited. Obstet Gynecol 2022;139.
The authors provided this information as a supplement to their article.
©2022 American College of Obstetricians and Gynecologists.

$45-$	0.000	0.001	0.000	0.001	0.000	0.000	0.010	0.987
50								
$50-$	0.000	0.002	0.001	0.002	0.001	0.001	0.013	0.980
55		0.003	0.001	0.002	0.001	0.003	0.020	0.969
$55-$ 60 $60-$ 65 $65-$ 70	0.001	0.001	0.005	0.002	0.003	0.001	0.004	0.029
$70-$ 75	0.002	0.008	0.003	0.003	0.054			
$75-$	0.002	0.014	0.006	0.004	0.002	0.010	0.060	0.902
80		0.026	0.011	0.005	0.004	0.013	0.086	0.853

Surgery effects

We assume that interventions HSY or HSY + BSO affect the base transition matrix M_{i} through multiplicative factors on death rates. To be more precise, let $\alpha^{\tau}=\left(\alpha_{1}^{\tau}, \alpha_{2}^{\tau}, \cdots, \alpha_{7}^{\tau}\right)$ be a vector of hazard ratios (HRs), where α_{j}^{τ} is the HR for risktype j comparing women getting HYS alone at age τ (time of intervention) to a healthy women. These were derived from the literature and are reported in Tables 1 and 2 (main manuscript). The transition probability matrix from age t_{i-1} to t_{i} for women who received HSY alone at intervention time τ is taken to be:

$$
\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
0 & \ldots & 1 & \ldots \\
p_{i}^{1} \alpha_{1}^{\tau} & \ldots & p_{i}^{7} \alpha_{7}^{\tau} & 1-\sum_{j} p_{i}^{j} \alpha_{j}^{\tau}
\end{array}\right)
$$

Similarly, we introduce $\beta^{\tau}=\left(\beta_{1}^{\tau}, \cdots, \beta_{7}^{\tau}\right)$, where β_{j}^{τ} is the HR comparing women who receive intervention HYS +BSO at age τ compared to HYS alone at that time. Transition rates in that cohort are taken to be:

$$
\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
0 & \ldots & 1 & \ldots \\
p_{i}^{1} \alpha_{1}^{\tau} \beta_{1}^{\tau} & \ldots & p_{i}^{7} \alpha_{7}^{\tau} \beta_{7}^{\tau} & 1-\sum_{j} p_{i}^{j} \alpha_{j}^{\tau} \beta_{j}^{\tau}
\end{array}\right)
$$

Hazard rate uncertainty

Literature estimates of hazard rates α_{j}^{τ} and β_{j}^{τ}, for $j=1,2, \cdots, 7$ are accompanied by confidence intervals, which we use to express uncertainty in parameter values for the purpose of our Bayesian analysis.

Rush SK, MA X, Newton MA, Rose SL. A revised Markov Model evaluating oophorectomy at the time of benign hysterectomy: age 65 years revisited. Obstet Gynecol 2022;139.
The authors provided this information as a supplement to their article.
©2022 American College of Obstetricians and Gynecologists.

```
# Store values(mean and upper quantile of hazard ratios) from Table 2 in the main manuscr
ipt
# HYS + BSO vs HYS alone
nRiskFactors = 6 # CVD, Stroke, Breast cancer, ovarian cancer, Lung cancer, colorectal ca
ncer
nCategory = 3 # before 50 no ET, before 50 ET, after 50
beta_mean = matrix(0,nrow = nRiskFactors,ncol = nCategory)
beta_97.5_quantile = matrix(0,nrow = nRiskFactors,ncol = nCategory)
row_names = c("chd","stroke","breast cancer","ovarian cancer","lung cancer", "colorectal
cancer")
col_names = c("before 50 no ET","before 50 ET","after 50")
rownames(beta_mean) = row_names
colnames(beta_mean) = col_names
rownames(beta_97.5_quantile) = row_names
colnames(beta_97.5_quantile) = col_names
beta_mean[,1] = c(2.35,1.35,.93,.12,1.4,.94)
beta_mean[,2] = c(.61,1.2,.95,.12,1.08,1.08)
beta_mean[,3] = c(0.78,1.37,.77,.12,.98,1.38)
beta_97.5_quantile[,1] = c(7.26,2.33,1.67,.28, 2.92,1.96)
beta_97.5_quantile[,2] = c(1.06,1.88,1.21,.28,1.64,1.67)
beta_97.5_quantile[,3] = c(1.46,3,1.45,.28,1.93,2.75)
# matrix (table 3)
nCategory = 2 # before 50, after 50
alpha_mean = matrix(0,nrow = nRiskFactors, ncol = nCategory)
alpha_97.5_quantile = matrix(0, nrow = nRiskFactors, ncol = nCategory)
col_names = c("before 50 ET","after 50")
rownames(alpha_mean) = row_names
rownames(alpha_97.5_quantile) = row_names
colnames(alpha_mean) = col_names
colnames(alpha_97.5_quantile) = col_names
alpha_mean[,1] = c(1.34,1.22,.96,.98,.92,.84)
alpha_mean[,2] = c(1.15,.8,1.01,.98,.88,.81)
alpha_97.5_quantile[,1] = c(1.68,1.67,1.19,1.11,1.11,1.13)
alpha_97.5_quantile[,2] = c(1.56,1.14,1.25,1.11,1.07,1.09)
```

Here are the specific numerical values of estimated hazards and upper confidence limits.

Rush SK, MA X, Newton MA, Rose SL. A revised Markov Model evaluating oophorectomy at the time of benign hysterectomy: age 65 years revisited. Obstet Gynecol 2022;139.
The authors provided this information as a supplement to their article.
knitr::kable(format(alpha_mean, digits=3, caption="Literature estimated hazards (alphas) for HYS intervention"))

	before 50 ET	after 50
chd	1.34	1.15
stroke	1.22	0.80
breast cancer	0.96	1.01
ovarian cancer	0.98	0.98
lung cancer	0.92	0.88
colorectal cancer	0.84	0.81
knitr: :kable(format(alpha_97.5_quantile, digits=3, caption="Upper quantile hazards for H		
YS intervention"))		

	before 50 ET	after 50
chd	1.68	1.56
stroke	1.67	1.14
breast cancer	1.19	1.25
ovarian cancer	1.11	1.11
lung cancer	1.11	1.07
colorectal cancer	1.13	1.09

knitr::kable(format(beta_mean, digits=3, caption="Literature estimated hazards (betas) f or HYS+BSO intervention"))

	before 50 no ET	before 50 ET	after 50
chd	2.35	0.61	0.78
stroke	1.35	1.20	1.37
breast cancer	0.93	0.95	0.77
ovarian cancer	0.12	0.12	0.12
lung cancer	1.40	1.08	0.98
colorectal cancer	0.94	1.08	1.38
knitr: :kable(format(beta_97.5_quantile, digits=3, caption="Upper quantile hazards for HY			
S+BSO intervention"))			

	before 50 no ET	before 50 ET	after 50
chd	7.26	1.06	1.46
stroke	2.33	1.88	3.00
breast cancer	1.67	1.21	1.45
ovarian cancer	0.28	0.28	0.28
lung cancer	2.92	1.64	1.93
colorectal cancer	1.96	1.67	2.75

Rush SK, MA X, Newton MA, Rose SL. A revised Markov Model evaluating oophorectomy at the time of benign hysterectomy: age 65 years revisited. Obstet Gynecol 2022;139.
The authors provided this information as a supplement to their article.
©2022 American College of Obstetricians and Gynecologists.
Page 11 of 37

We use these statistics to inform a literature posterior distribution of hazard rates. To so we work on the log scale and treat the estimates and confidence intervals as providing information for the mean and variance of respective normal posterior distributions.

Our approach assumes that underlying hazards for death by various causes may be related to time of surgical intervention, and that any such temporal effect in the time interval $45-55$ years is continuous, smooth (quadratic) and monotone. The quadratic, monotone interpolation (see next section) does not rely on plugged-in point estimates, but rather uses Monte Carlo to propagate uncertainty in both the quadratic change and the endpoint HRs. We use reported point estimates and confidence intervals to guide the posterior sampling of the endpoint HR's. Because these hazards are nuisance parameters relative to the target age-80 survival probability, we prefer to not make stronger assumptions, such as they stay constant over 45-55, or are a step function with a step at age 50 .

Monotone quadratic approximation to interpolate to a 1-year hazards

Literature-reported hazards HR were available over a range, such as before or after age 50 . We sought to simulate the intervention effects for times τ over a more refined grid (one-year gaps). This requires HR for interventions at ages $45,46, \cdots, 55$. We take a flexible (quadratic) formulation and assume hazards are monotone as we postpone interventions. For simplicity, we view the available before 50 HR as HR at age 45 , and we view HR after 50 as HR at age 55. Taking these two endpoints, we interpolate HRs at other intervention ages using monotone, quadratic interpolation. Let h_{0} be the HR at age 45 and h_{1} be the HR at age 55. We map the ages $\tau \in\{45,46, \cdots, 55\}$ to $\tau^{*} \in\{0,0.1, \cdots, 1\}$, and consider the interpolated hazard to be $f\left(\tau^{*}\right) \times\left(h_{0}-h_{1}\right)+h_{1}$ for endpoint hazards h_{0} and h_{1}. Quadratic f entails $f\left(\tau^{*}\right)=a\left(\tau^{*}\right)^{2}+$ $b \tau^{*}+c$ and the endpoints constraints $f(0)=1, f(1)=0$, thus we have $c=1$ and $b=-1-a$. For monotonicity, we restrict $f^{\prime}\left(\tau^{*}\right)<0$, and thus $2 \tau^{*} a+b<0$ or equivalently $2 \tau^{*} a-a-1=\left(2 \tau^{*}-1\right) a-1<0$ at the range τ^{*} from 0 to 1 , which gives $-1<a<1$. We do not assume that this monotone quadratic function is known; rather we sample uniformly from coefficients a in $[-1,1]$ in the Bayesian computation. The direction of monotonicity (increasing or descreasing) depends on the ranking of simulated HRs at the endpoints 45 and 55.

```
#monotone, quadratic interpolation of hazard rate
quad = function(start,end){
    a = runif(1, -1,1)
    b = -1 - a
    c = 1
    mean_age_start =
    mean_age_end =
    t = ((45:55) - 45) / 10
    res = (a*t^2 + b*t + c)* (start - end) + end
    return(res)
}
x = 45:55
tmp = quad(1,0)
plot(x,tmp,type = "l",col = "green",xlab = "intervention time",ylab = "interpolation for
hazards")
#abline(1,-1,col = "red",lwd = 2)
for(i in 1:100){
    tmp = quad(1,0)
```

Rush SK, MA X, Newton MA, Rose SL. A revised Markov Model evaluating oophorectomy at the time of benign hysterectomy: age 65 years revisited. Obstet Gynecol 2022;139.
The authors provided this information as a supplement to their article.
©2022 American College of Obstetricians and Gynecologists.
Page 12 of 37

```
    lines(x,tmp,col = "green")
}
```


intervention time

Posterior computations

Above we have specified base transition matrices for a cohort of women evolving over time from age 45. We have also formulated hazards associated with interventions HYS or HYS + BSO when the intervention happens at some year τ between 45 and 55 . We have formulated log-normal posterior distributions for the hazards, and so these induce posterior distributions for the target quantities of interest, namely overall survival to age 80 or death by a specific cause by that age. Mathematically we could obtain the target quantities by careful matrix multiplications. A simpler-to-code but computationally more intensive approach is via simulation, which we report below. We also found that simulation was quite helpful in preliminary exploratory computations and also diagnostic checks. Below we create a synthetic cohort of $\mathrm{N}=10000$ women that we propogate by the selected transition rates. To handle uncertainty in the hazards we sample these from literature posteriors nsim=500 times.

The simulation procedure is as follows: nsim times we sample hazard rates from the literature posterior (log normal, using literature-based moments). For the two interventions (HYS alone (keep ovaries) to HYS + BSO (remove ovaries)) and various intervention times τ, we construct relevant transition matrices and we simulate cohorts of size N up to age 80 . We thus simulate the posterior distribution (given literature data) of target survival probabalities:

$$
P(\text { survival to age } 80 \mid \mathrm{HYS}+\mathrm{BSO} \text { at age } \tau)
$$

and

$$
P(\text { survival at age } 80 \mid \mathrm{HYS} \text { alone at age } \tau) .
$$

Rush SK, MA X, Newton MA, Rose SL. A revised Markov Model evaluating oophorectomy at the time of benign hysterectomy: age 65 years revisited. Obstet Gynecol 2022;139.
The authors provided this information as a supplement to their article.

We also investigate specific risk factors, e.g.
$P($ death by stroke before or at age $80 \mid \mathrm{HYS}+\mathrm{BSO}$ at age $\tau)$
and
$P($ death by stroke before or at age $80 \mid \mathrm{HYS}$ alone at age $\tau)$.
Note that the probabilities above are population properties that depend on parameters (e.g. hazard rates) which we know only approximately. By simulating the hazard rates from log-normal, literature-derived posterior distributions, we have induced posterior distributions for the target rates above. We summarize these induced posterior samples in Figure 1 (main manuscript) and we also compare whether one intervention is better than the other at age $\tau=50$.

For code, we design a function simHelper, which wraps the calculations to simulate N women for a random set of hazard rates. It yields a list containing the counts of states along the simulated path for both interventions. We then call the simHelper function nsim=500 times to collect information on the induced posterior distributions.

```
#Prepare for survival computations:
library("survival")
library("survminer")
## Loading required package: ggplot2
## Loading required package: ggpubr
library("ggplot2")
library("patchwork")
# set the seed
set.seed(312345126)
```

We have function get HR to fetch the mean and 97.5\% quantile of a log-normal hazard ratio posterior for a risk factor.

```
# function map a risk factor to the row number in alpha and beta matrices
mapRisk = function(risk){
    vec = c("chd","stroke","breast cancer","ovarian cancer","lung cancer", "colorectal canc
er")
    index = which(vec == risk)
    if (length(index) > 0){
        return(index)
    }else{
        return(0)
    }
}
# function to return (mean,97.5%quantile) parameters with respect to specified risk, trea
tment(trt) and status (before 50 / after 50, using ET or not)
# specifically status = 1 => before 50
# status = 2 => after 50
```

Rush SK, MA X, Newton MA, Rose SL. A revised Markov Model evaluating oophorectomy at the time of benign hysterectomy: age 65 years revisited. Obstet Gynecol 2022;139.
The authors provided this information as a supplement to their article.
©2022 American College of Obstetricians and Gynecologists.
Page 14 of 37

```
# status = 3 => before 50 and ET
getHR = function(risk,trt,status){
    if(!(trt %in% c("HYS","BSO"))){
        message("error: unexpected treatment symbol")
        return()
    }
    if(!(status %in% c(1,2,3))){
        message("error: unexpected status symbol")
        return()
    }
    if(trt == "HYS" && status == 3)
    {
        message("error: HYS only has 2 states")
        return()
    }
    if(trt == "HYS"){
        mat_mean = alpha_mean
        mat_upper = alpha_97.5_quantile
        iCol = status
    }else{
        mat_mean = beta_mean
        mat_upper = beta_97.5_quantile
        if(status == 3){
            iCol = 2
        }else if(status == 1){
            iCol = 1
        }else{
            iCol = 3
        }
    }
    index = mapRisk(risk)
    if(index == 0){
        message("error: unexpected risk factor")
        return()
    }
    return(c(mat_mean[index,iCol],mat_upper[index,iCol]))
}
```

With the parameters fetched by getHR function, we can use sampleHR to random sample hazard ratios with respect to a risk factor.

```
# get sampled log HR of CVD
# mn: mean of the log normal
```

Rush SK, MA X, Newton MA, Rose SL. A revised Markov Model evaluating oophorectomy at the time of benign hysterectomy: age 65 years revisited. Obstet Gynecol 2022;139.
The authors provided this information as a supplement to their article.

```
# up: 97.5% quantile
randomHR = function(mn,up){
    return(log(rlnorm(1, mean = log(mn), sd = (log(up) - log(mn)) / 1.96)))
}
```

sampleHR = function(risk)\{
\# risk is associated disease causing death
\# intervention time before 50, HYS alone, referent healthy women
trt = "HYS"
vec $=\operatorname{getHR}(r i s k, t r t, 1)$
up $=$ vec[2] \#\# 97.5\% quantile
$m n=\operatorname{vec}[1] \quad$ \#\# mean
start_HYS = randomHR(mn,up)
\# intervention time after 50, HYS alone, referent healthy women
vec $=\operatorname{getHR}(r i s k, t r t, 2)$
up $=\operatorname{vec}[2]$
$m n=\operatorname{vec}[1]$
end_HYS = randomHR(mn,up)
\# before 50, HYS + BSO, referent HYS alone
trt = "BSO"
vec $=\operatorname{getHR}(r i s k, t r t, 1)$
up $=\operatorname{vec}[2]$
$m n=\operatorname{vec}[1]$
start_BSO_noET = randomHR(mn,up) + start_HYS
\# after 50, HYS + BSO, referent HYS alone
vec $=\operatorname{getHR}(r i s k, t r t, 2)$
up $=\operatorname{vec}[2]$
$m n=\operatorname{vec}[1]$
end_BSO = randomHR(mn,up) + end_HYS
\# before 50, HYS + BSO but using estrogen, referent healthy women
vec $=\operatorname{getHR}(r i s k, t r t, 3)$
up $=\operatorname{vec}[2]$
$m n=\operatorname{vec}[1]$
BSO_ET = randomHR (mn,up)
res = list()
\# HYS alone
res\$conserved = c(start_HYS,end_HYS)
\# HYS + BSO

Rush SK, MA X, Newton MA, Rose SL. A revised Markov Model evaluating oophorectomy at the time of benign hysterectomy: age 65 years revisited. Obstet Gynecol 2022;139.
The authors provided this information as a supplement to their article.

```
    res$removed = c(start_BSO_noET,end_BSO)
    # HYS + BSO + ET
    res$estrogen = BSO_ET
    return(res)
}
```

\# we do not consider hip fracture here
\#get_HR_HF = function()\{
\# HR for hip fracture
\# start_HYS = 0
\#
\# end_HYS = 0

```
# up = 1.86
    # mn = 0.91
    #
    # start_BSO_noET = randomHR(mn,up)
    #
    # up = 2.04
    # mn = 0.84
    # end_BSO = randomHR(mn,up)
    #
    # ## estrogen
    # up = 1.43
    # mn = 0.94
    # BSO_ET = randomHR(mn,up)
    # res = list()
    #
    # res$conserved = c(start_HYS,end_HYS)
    #
    # res$removed = c(start_BSO_noET,end_BSO)
    #
    # res$estrogen = BSO_ET
    #
    # return(res)
```

Rush SK, MA X, Newton MA, Rose SL. A revised Markov Model evaluating oophorectomy at the time of benign hysterectomy: age 65 years revisited. Obstet Gynecol 2022;139.
The authors provided this information as a supplement to their article.

Below are functions used to run the simulation. They include functions to: (1) return desired transition matrices given the intervention time and the treatment. (2) simulate cohort given the intervention time and treatment,from user specified starting age (usually is the intervention time) to age 80, and (3) get proportions of people falling into each category, e.g. survival, dead by stroke, etc, at age 80 .

```
# simulation related functions
# no for ovariance conserved
# cycle for which cycle(age)
getTran = function( CVD_no, CVD, ST_no, ST, BC_no, BC, OV_no, OV,
    cc_no, cc, lc_no, lc, cycle, mul = 1){
    i = cycle
    # initial base transition
    # set to ovarian conserverd(OC) or removed(OO)
    OC = base[[i]]
    OO = base[[i]]
    col = ncol(base[[i]])
    OC[col, 1] = OC[col, 1] * OV_no
    OC[col, 2] = OC[col, 2] * CVD_no
    OC[col, 3] = OC[col, 3] * ST_no
    OC[col, 4] = OC[col, 4] * BC_no
    OC[col, 5] = OC[col, 5] * cc_no
    OC[col, 6] = OC[col, 6] * lc_no
    OC[col, 7] = OC[col, 7]
    # multiplicative factor to Linear interpolate the different starting time
    # for example, start at 47, then the transition from 47 to 49, mul = 3/5 since we
only have 3 out of 5 year cycle
    OC = OC * mul
    # probability continue to survive
    OC[col, col] = 1 - sum(OC[col, 1:(col - 1)])
    # same as above but for ovaries removed
    OO[col, 1] = OO[col, 1] * OV
    OO[col, 2] = OO[col, 2] * CVD
    OO[col, 3] = OO[col, 3] * ST
    OO[col, 4] = OO[col, 4] * BC
```

Rush SK, MA X, Newton MA, Rose SL. A revised Markov Model evaluating oophorectomy at the time of benign hysterectomy: age 65 years revisited. Obstet Gynecol 2022;139.
The authors provided this information as a supplement to their article.
©2022 American College of Obstetricians and Gynecologists.

```
        OO[col, 5] = OO[col, 5] * cc
        OO[col, 6] = OO[col, 6] * lc
        OO[col, 7] = OO[col, 7]
        00 = 00 * mul
        OO[col, col] = 1 - sum(OO[col, 1:(col - 1)])
    return(list(OC, OO))
}
# hip fracture considered
# we do not consider the scenario involving hip fracture
# genTranHf = function(CVD_no,CVD,ST_no,ST,BC_no, BC, OV_no,OV, cc_no,cc,lc_no, lc,hf_no,
hf,cycle, mul = 1){
#
# i = cycle
# for (i in 1:5) {
# OC = base_all[[i]]
# OO = base_all[[i]]
#
# col = ncol(base_all[[i]])
#
#
#
#
#
#
#
#
```



```
#
#
# OO[col, 1] = OO[col, 1] * OV * mul
# OO[col, 2] = OO[col, 2] * CVD * mul
# OO[col, 3] = OO[col, 3] * ST * mul
# OO[col, 4] = OO[col, 4] * BC * mul
# OO[col, 5] = OO[col, 5] * cc * mul
# OO[col, 6] = OO[col, 6] * Lc * mul
# OO[col, 7] = OO[col, 7] * hf * mul
# OO[col, 8] = OO[col, 8] * mul
# OO[col, col] = 1 - sum(OO[col, 1:(col - 1)])
# }
#
# return(list(OC, OO))
# }
# get transition matrix,
# given intervention time ii and cycle index
simCyc = function(intervention, cycle,hf = F, estro = F, mul = 1){
```

Rush SK, MA X, Newton MA, Rose SL. A revised Markov Model evaluating oophorectomy at the time of benign hysterectomy: age 65 years revisited. Obstet Gynecol 2022;139.
The authors provided this information as a supplement to their article.
©2022 American College of Obstetricians and Gynecologists.
Page 19 of 37

```
# intervention: integer, 1 - 11 ==> represent intervention time from age 45 to 55
# hf: boolean, indicator for if hip fracture is considered (deprecated)
# estro: boolean, indicator for if estrogen was used
# mul: 1/5,2/5,3/5,4/5,1 ==> represent linear interpolate 5-year transition probabili
ties to cover 1 to 5 years range.
    # cycle: integer, 1 - 7 ==> represent 45-49,..., 75-79
# get hazard ratio of coronary heart disease
# conserved and removed
# before 50 and after 50
res = sampleHR("chd")
HR_CVD_no = quad(res$conserved[1],res$conserved[2])
CVD_no_use = exp(HR_CVD_no[intervention])
# state of using estrogen
# if using estrogen, we only consider comparison of one data point
# that is before 50, no need to interpolate
if(estro == F){
        HR_CVD = quad(res$removed[1],res$removed[2])
        CVD_use = exp(HR_CVD[intervention])
}else{
        CVD_use = exp(res$estrogen)
}
# HR of stroke
res= sampleHR("stroke")
HR_st_no = quad(res$conserved[1],res$conserved[2])
st_no_use = exp(HR_st_no[intervention])
if(estro == F){
    HR_st = quad(res$removed[1],res$removed[2])
    st_use = exp(HR_st[intervention])
}else{
    st_use = exp(res$estrogen)
}
# HR of breast cancer
res= sampleHR("breast cancer")
HR_BC_no = quad(res$conserved[1],res$conserved[2])
```

Rush SK, MA X, Newton MA, Rose SL. A revised Markov Model evaluating oophorectomy at the time of benign hysterectomy: age 65 years revisited. Obstet Gynecol 2022;139.
The authors provided this information as a supplement to their article.

```
bc_no_use = exp(HR_BC_no[intervention])
if(estro == F){
    HR_BC = quad(res$removed[1],res$removed[2])
    bc_use = exp(HR_BC[intervention])
}else{
    bc_use = exp(res$estrogen)
}
res= sampleHR("ovarian cancer")
HR_OV_no = quad(res$conserved[1],res$conserved[2])
ov_no_use = exp(HR_OV_no[intervention])
if(estro == F){
    HR_OV = quad(res$removed[1],res$removed[2])
    ov_use = exp(HR_OV[intervention])
}else{
    ov_use = exp(res$estrogen)
}
res= sampleHR("colorectal cancer")
HR_CC_no = quad(res$conserved[1],res$conserved[2])
cc_no_use = exp(HR_CC_no[intervention])
if(estro == F){
    HR_CC = quad(res$removed[1],res$removed[2])
    cc_use = exp(HR_CC[intervention])
}else{
    cc_use = exp(res$estrogen)
}
res= sampleHR("lung cancer")
HR_LC_no = quad(res$conserved[1],res$conserved[2])
lc_no_use = exp(HR_LC_no[intervention])
if(estro == F){
    HR_LC = quad(res$removed[1],res$removed[2])
    lc_use = exp(HR_LC[intervention])
}else{
    lc_use = exp(res$estrogen)
}
```

Rush SK, MA X, Newton MA, Rose SL. A revised Markov Model evaluating oophorectomy at the time of benign hysterectomy: age 65 years revisited. Obstet Gynecol 2022;139.
The authors provided this information as a supplement to their article.

```
    # whether consider hip fracture or not
    # deprecated
    if(hf){
        #res= get_HR_HF()
    #HR_HF_no = quad(res$conserved[1],res$conserved[2])
    #hf_no_use = exp(HR_HF_no[ii])
    #HR_HF = quad(res$removed[1],res$removed[2])
    #hf_use = exp(HR_HF[ii])
        #tm = genTranHf(CVD_no_use,CVD_use,st_no_use,st_use,
            # bc_no_use,bc_use,ov_no_use,
            # ov_use,cc_no_use,cc_use,lc_no_use,lc_use,hf_no_use,hf_use,cycle,m
ul)
        tm = NULL
    }else{
        tm = getTran(CVD_no_use,CVD_use,st_no_use,st_use,
                        bc_no_use,bc_use,ov_no_use,
                        ov_use,cc_no_use,cc_use,lc_no_use,lc_use,cycle,mul)
    }
    return(tm)
}
# run the simulation and
# return counts of people falling into each states at each cycle
simHelper = function(N,intervention, start = 1,hf = F, estro = F){
    # N: integer, total number of people entered the simulation
    # intervention: integer, 1 - 11 ==> represent intervention time from age 45 to 55
    # start: integer ==> at what cycle to start
    # mul: 1/5,2/5,3/5,4/5,1 ==> represent linear interpolate 5-year transition probabili
ties to cover 1 to 5 years range.
    mul = (intervention - 1) %% 5 / 5
    # number of cycle, 45-49, 50 - 54,...,75-79
    Ncycle = 7
    # transition matrices for conserved (OC) and removed (OO)
    OC = list()
    OO = list()
    # end cycle will always be 75-79
    end = Ncycle
```

Rush SK, MA X, Newton MA, Rose SL. A revised Markov Model evaluating oophorectomy at the time of benign hysterectomy: age 65 years revisited. Obstet Gynecol 2022;139.
The authors provided this information as a supplement to their article.
©2022 American College of Obstetricians and Gynecologists.
Page 22 of 37

```
    # get transition matrices
    for(cycle in 1:Ncycle){
        if(cycle == start){
            # need to consider if interpolating the current 5-year transition matrix
            tm = simCyc(intervention,cycle,hf,estro,mul)
    }else{
        tm = simCyc(intervention, cycle,hf,estro)
    }
    OC[[cycle]] = tm[[1]]
    OO[[cycle]] = tm[[2]]
    }
    # get probabilities of alive tranferring to other states
    # bottom row of the transition matrix
    prb_OC = list()
    prb_00 = list()
    col = ncol(OC[[1]])
    for (i in 1:Ncycle) {
    prb_OC[[i]] = OC[[i]][col, ]
    prb_OO[[i]] = OO[[i]][col, ]
    }
    # counts of people falling to different states at each cycle, from start to end
    counts_OC = list()
    counts_00 = list()
    # total people entering the simulation
    N1 = N
    N2 = N
    # start can be set to 1 or 2
    # as we consider different starting age between 45 to 55. (overlay with the first two
cycles 45-49,50-54)
    for (i in start:end) {
        counts_OC[[i - start + 1]] = rmultinom(1, size = N1, prb_OC[[i]])
        N1 = counts_OC[[i - start + 1]][col]
        counts_00[[\overline{i}- start + 1]] = rmultinom(1, size = N2, prb_00[[i]])
        N2 = counts_OO[[i - start + 1]][col]
    }
    res = list()
    res[[1]] = counts_OC
    res[[2]] = counts_00
    return(res)
}
# get the survival rate at age 80 for both treatment
Rush SK, MA X, Newton MA, Rose SL. A revised Markov Model evaluating oophorectomy at the time of benign hysterectomy: age 65 years revisited. Obstet Gynecol 2022;139.
The authors provided this information as a supplement to their article.
©2022 American College of Obstetricians and Gynecologists.
```

simSurvival = function(N,intervention,start = 1,hf = F, estro = F){
res = simHelper(N,intervention,start,hf,estro)
n = length(res[[1]][[1]])
\# HYS alone
tmp1 = res[[1]][[length(res[[1]])]][n] / N
\# HYS + BSO
tmp2 = res[[2]][[length(res[[2]])]][n] / N
return(c(tmp1,tmp2))
}

convert previous counts at each cycle(simHelper)

to cumulative proportions for a specified state(indexed by J)

sim = function(N,intervention,J,start = 1,hf = F,estro = F){
res = simHelper(N,intervention,start = start,hf = hf,estro = estro)
ct_OC = res[[1]]
ct_00 = res[[2]]
n_ = length(ct_OC)
CVD_num = rep(0, length(n_))
CVD_denom = rep(0, length(n_))
CVD_num_00 = rep(0, length(n_))
for (i in 1:n_) {
if(i == 1){
CVD_num[i] = ct_OC[[i]][J]
CVD_num_OO[i] = ct_00[[i]][J]
}else{
CVD_num[i] = CVD_num[i - 1] + ct_OC[[i]][J]
CVD_num_OO[i] = \overline{CVD_num_OO[i - 1] + ct_OO[[i]][J]}
}
CVD_denom[n_ - i + 1] = 80 - (i - 1) * 5
}
res = list()
res[[1]] = c(0, CVD_num/N)
res[[2]] = c(0, CVD_num_00/N)
res[[3]] = c(CVD_denom[1] - 5 + (ii - 1) %% 5, CVD_denom)
return(res)
}

get counts of a specified state (chd, stroke, breast cancer,...) over each cycle

getData = function(res,Name){
HYS = res[[1]]
BSO = res[[2]]
I = which(rownames(HYS[[1]]) == Name)
vec1 = c()
vec2 = c()
for(i in 1:length(HYS)){
vec1 = c(vec1,HYS[[i]][I])
vec2 = c(vec2,BSO[[i]][I])
}

```

Rush SK, MA X, Newton MA, Rose SL. A revised Markov Model evaluating oophorectomy at the time of benign hysterectomy: age 65 years revisited. Obstet Gynecol 2022;139.
The authors provided this information as a supplement to their article.
©2022 American College of Obstetricians and Gynecologists.
```

 res = list()
 res[[1]] = vec1
 res[[2]] = vec2
 return(res)
 }

```

Specifically, below is one example of using the simHelper funtion, which simulate a cohort given the cohort size, intervention time starting age, and the usage of estrogen. It keeps track of how many people falling into each category along the path to age 80 under HYS and HYS + BSO separately.
```


This block of codes is just a demo of one run simulation

N = 10000

for example, one run of simulation, starting at 45, intervention time is 45, using estr

ogen when HYS + BSO
intervention = 1
res = simHelper(N,intervention, start = 1,estro = T)

counts of N people falling into different category along the path

HYS = res[[1]]
BSO = res[[2]]

```

\section*{Table 3}

Here we consider how to get Bayesian confidence interval for Table 3 (main manuscript). For example, the death rates by stroke by age 80, when the two treatments HYS and HYS + BSO are performed after age 50 . We simulate \(n \operatorname{sim}=500\) paths of the cohort \((N=10000)\) for both treatments. Each path of a treatment will give death rate of stroke by age 80 . We then pool over them to get mean and quantiles for the confidence interval.
```

counts = function(simu_res,rf){
tmp = getData(simu_res,rf)
if(rf == "Alive"){
n = length(tmp[[1]])
trt1 = tmp[[1]][n]
trt2 = tmp[[2]][n]
}
else{
trt1 = sum(tmp[[1]])
trt2 = sum(tmp[[2]])
}
cts = c(trt1,trt2)
return(cts)

```

Rush SK, MA X, Newton MA, Rose SL. A revised Markov Model evaluating oophorectomy at the time of benign hysterectomy: age 65 years revisited. Obstet Gynecol 2022;139.
The authors provided this information as a supplement to their article.
©2022 American College of Obstetricians and Gynecologists.
```

}
getBayesianCI = function(START,intervention,hf=F,estro=F,N=10000,nsim=500){
rfs = c("Ovarian cancer","Coronary heart disease","Stroke",
"Breast cancer","Colorectal cancer","Lung cancer","Alive")
rates = list()
for(i in 1:7){
rates[[rfs[i]]] = matrix(0,nrow=nsim,ncol=2)
}
for(i in 1:nsim){
res = simHelper(N,intervention,start = START,hf = hf,estro = estro)
for(j in 1:7){
rates[[rfs[j]]][i,] = counts(res,rfs[j]) / N * 100
}
}
\#\# mean
M = matrix(0,nrow = length(rfs),ncol = 2)
\#\# 97.5% quantile
UQ = matrix(0,nrow = length(rfs),ncol = 2)
\#\# 2.5% quantile
LQ = matrix(0,nrow = length(rfs),ncol = 2)
for(i in 1:7){
tmp = rates[[rfs[i]]]
M[i,] = colMeans(tmp)
UQ[i,] = apply(tmp,2,function(x) quantile(x,0.975))
LQ[i,] = apply(tmp,2,function(x) quantile(x,0.025))
}
toBeRet = list()
toBeRet[["mean"]] = M
toBeRet[["upper quantile"]] = UQ
toBeRet[["lower quantile"]] = LQ
return(toBeRet)
}

before 50, HYS + BSO + estrogen

result_estrogen = getBayesianCI(START = 1,intervention = 1, estro = T)

```
\#\# before 50, treatments: HYS alone, HYS + BSO, HYS + BSO
result_before = getBayesianCI(START = 1,intervention = 1)
\#\# after 50, treatments: HYS alone, HYS + BSO
result_after = getBayesianCI(START = 2,intervention = 11)
tb3 = data.frame("Surgery Time" = c("before 50","before 50", "before 50", "after 50", "a
fter 50"))
tb3\$` Surgery` = c("HYS + BSO","HYS + BSO","HYS alone","HYS + BSO","HYS alone")
tb3\$`Estrogen Use` = c("no", "yes", "no","no","no")

Rush SK, MA X, Newton MA, Rose SL. A revised Markov Model evaluating oophorectomy at the time of benign hysterectomy: age 65 years revisited. Obstet Gynecol 2022;139.
The authors provided this information as a supplement to their article.
```

buildstring = function(x,i,j,digits=1){
res = paste0(round(x[['mean']][i,j],digits)," (",round(x[['lower quantile']][i,j],digit
s),",",round(x[['upper quantile']][i,j],digits),")")
return(res)
}
getBCIforKable = function(i,result_estrogen,result_before,result_after){
\#\# use of estrogen
et = buildstring(result_estrogen,i,2)
hys_alone_before = buildstring(result_before,i,1)
hys_bso_before = buildstring(result_before,i,2)
hys_alone_after = buildstring(result_after,i,1)
hys_bso_after = buildstring(result_after,i,2)
res = c(hys_bso_before,et,hys_alone_before,hys_bso_after,hys_alone_after)
return(res)
}
i = 7
tb3$`Overall Survival` = getBCIforKable(i,result_estrogen,result_before,result_after)
i = 2
tb3$`Cardiovascular Disease` = getBCIforKable(i,result_estrogen,result_before,result_afte
r)
i = 3
tb3$`Stroke` = getBCIforKable(i,result_estrogen,result_before,result_after)
i = 4
tb3$`Breast Cancer` = getBCIforKable(i,result_estrogen,result_before,result_after)
i = 1
tb3$`Ovarian Cancer` = getBCIforKable(i,result_estrogen,result_before,result_after)
i = 5
tb3$`Colorectal Cancer` = getBCIforKable(i,result_estrogen,result_before,result_after)
i = 6
tb3\$`Lung Cancer` = getBCIforKable(i,result_estrogen,result_before,result_after)

```
knitr::kable( format(tb3, caption="Baysian confidence interval, table 3 in the main" ) )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Surgery \\
Time
\end{tabular} & Surgery & Estrogen Use & Overall Survival & Cardiovascular Disease & Stroke & Breast Cancer & Ovarian Cancer & Colorectal Cancer & Lung Cancer \\
\hline \begin{tabular}{l}
before \\
50
\end{tabular} & \[
\begin{aligned}
& \text { HYS + } \\
& \text { BSO }
\end{aligned}
\] & no & \[
\begin{aligned}
& 52.8 \\
& (40.7,59.7)
\end{aligned}
\] & 16.8 (9.4,29.8) & \[
\begin{aligned}
& 3.1 \\
& (2.2,4.4)
\end{aligned}
\] & \[
\begin{aligned}
& 1.5 \\
& (1.1,2)
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& (0,0.1)
\end{aligned}
\] & \[
\begin{aligned}
& 0.8 \\
& (0.5,1.1)
\end{aligned}
\] & \[
\begin{aligned}
& 4.2 \\
& (2.9,5.9)
\end{aligned}
\] \\
\hline \begin{tabular}{l}
before \\
50
\end{tabular} & \[
\begin{aligned}
& \text { HYS + } \\
& \text { BSO }
\end{aligned}
\] & yes & \[
\begin{aligned}
& 66.3 \\
& (64.7,67.8)
\end{aligned}
\] & 3.1 (2.2,4.2) & \[
\begin{aligned}
& 2.4 \\
& (1.8,3)
\end{aligned}
\] & \[
\begin{aligned}
& 1.6 \\
& (1.4,1.9)
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& (0,0.2)
\end{aligned}
\] & \[
\begin{aligned}
& 1.1 \\
& (0.8,1.4)
\end{aligned}
\] & \[
\begin{aligned}
& 3.6 \\
& (2.9,4.5)
\end{aligned}
\] \\
\hline \begin{tabular}{l}
before \\
50
\end{tabular} & HYS alone & no & \[
\begin{aligned}
& 63.5 \\
& (62.2,64.9)
\end{aligned}
\] & 6.5 (5.6,7.4) & \[
\begin{aligned}
& 2.3 \\
& (1.9,3)
\end{aligned}
\] & \[
\begin{aligned}
& 1.6 \\
& (1.3,1.9)
\end{aligned}
\] & \[
\begin{aligned}
& 0.6 \\
& (0.5,0.8)
\end{aligned}
\] & \[
\begin{aligned}
& 0.8 \\
& (0.6,1)
\end{aligned}
\] & \[
\begin{aligned}
& 3 \\
& (2.6,3.4)
\end{aligned}
\] \\
\hline after 50 & \[
\begin{aligned}
& \text { HYS + } \\
& \text { BSO }
\end{aligned}
\] & no & \[
\begin{aligned}
& 66.9 \\
& (64.4,69)
\end{aligned}
\] & \(4.5(3,6.5)\) & \[
\begin{aligned}
& 2.3 \\
& (1.4,3.8)
\end{aligned}
\] & \[
\begin{aligned}
& 1.3 \\
& (0.9,1.8)
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& (0,0.1)
\end{aligned}
\] & \[
\begin{aligned}
& 1.1 \\
& (0.7,1.5)
\end{aligned}
\] & \[
\begin{aligned}
& 2.9 \\
& (2,4.1)
\end{aligned}
\] \\
\hline after 50 & HYS alone & no & \[
\begin{aligned}
& 66.4 \\
& (65,67.6)
\end{aligned}
\] & 5.5 (4.5,6.5) & \[
\begin{aligned}
& 1.5 \\
& (1.2,1.9)
\end{aligned}
\] & \[
\begin{aligned}
& 1.6 \\
& (1.3,1.9)
\end{aligned}
\] & \[
\begin{aligned}
& 0.6 \\
& (0.5,0.8)
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& (0.6,0.9)
\end{aligned}
\] & \[
\begin{aligned}
& 2.8 \\
& (2.5,3.2)
\end{aligned}
\] \\
\hline
\end{tabular}

\footnotetext{
Rush SK, MA X, Newton MA, Rose SL. A revised Markov Model evaluating oophorectomy at the time of benign hysterectomy: age 65 years revisited. Obstet Gynecol 2022;139.
The authors provided this information as a supplement to their article.
©2022 American College of Obstetricians and Gynecologists.
}

We also investigate how intervention time affects the outcomes at age 80. We consider the intervention time ranging from 45 to 55. Recall that our transition matrices cover 5 years. If we have a simulated cohort receiving the treatments at age 47 , there are only 3 years to 50. To adjust that, we linearly interpolate the transition probabilities of alive to other states from 45 to 50 so that it covers 3 years. Details are in the simHelper function.

\section*{1-year}

Below are the codes to get Figure 2 (main manuscript).
nsim \(=500\)

CVD1 \(=\operatorname{rep}(0\), nsim \()\)
CVD2 \(=\operatorname{rep}(0\), nsim \()\)
ST1 \(=\operatorname{rep}(0, n s i m)\)
ST2 \(=\operatorname{rep}(0, \mathrm{nsim})\)
BC1 \(=\operatorname{rep}(0\), nsim \()\)
BC2 \(=\operatorname{rep}(0, \mathrm{nsim})\)
OV1 = rep(0,nsim)
OV2 = rep(0,nsim)
SUV1 \(=\operatorname{rep}(0\), nsim \()\)
SUV2 \(=\operatorname{rep}(0\), nsim \()\)
CC1 = CC2 = SUV1
LC1 = LC2 = SUV2
\#HF1 = HF2 = SUV1
tmp \(=\operatorname{rep}(0,11)\)
\(\mathrm{sv} 1=\mathrm{sv} 2=\mathrm{ch} 1=\mathrm{ch} 2=\mathrm{st} 1=\mathrm{st2}=\mathrm{bc} 1=\mathrm{bc} 2=\mathrm{ov} 1=\mathrm{ov} 2=\mathrm{cc} 1=\mathrm{cc} 2=\mathrm{lc} 1=\mathrm{lc} 2=\mathrm{hf} 1=\) \(\mathrm{hf} 2=\mathrm{tmp}\)
svU1 \(=\) svU2 \(=\) chU1 \(=~ c h U 2=s t U 1=s t U 2=b c U 1=b c U 2=o v U 1=o v U 2=c c U 1=c c U 2=1 c U 1\) = lcU2 = hfU1 = hfU2 = tmp
\(\operatorname{svL1}=\mathrm{svL} 2=\mathrm{chL1}=\mathrm{chL2}=\mathrm{stL1}=\mathrm{stL} 2=\mathrm{bcL1}=\mathrm{bcL} 2=\mathrm{ovL1}=\mathrm{ovL2}=\mathrm{ccL} 1=\mathrm{ccL} 2=1 \mathrm{lL1}\) = lcL2 = hfL1 = hfL2 = tmp
```

for(ii in 1:11){
pos = ceiling(ii / 5)
for(i in 1:nsim){
tmp = sim(N,ii,2,start = pos)
ll = length(tmp[[1]])

```
        CVD1[i] \(=\operatorname{tmp}[[1]][11]\)
        CVD2[i] = tmp[[2]][11]

Rush SK, MA X, Newton MA, Rose SL. A revised Markov Model evaluating oophorectomy at the time of benign hysterectomy: age 65 years revisited. Obstet Gynecol 2022;139.
The authors provided this information as a supplement to their article.
```

 tmp = sim(N,ii,3,start = pos)
 ST1[i] = tmp[[1]][ll]
 ST2[i] = tmp[[2]][ll]
 tmp = sim(N,ii,4,start = pos)
 BC1[i] = tmp[[1]][11]
 BC2[i] = tmp[[2]][11]
 tmp = sim(N,ii,1,start = pos)
 OV1[i] = tmp[[1]][ll]
 OV2[i] = tmp[[2]][11]
 tmp = sim(N,ii,5,start = pos)
 CC1[i] = tmp[[1]][11]
CC2[i] = tmp[[2]][11]
tmp = sim(N,ii,6,start = pos)
LC1[i] = tmp[[1]][11]
LC2[i] = tmp[[2]][ll]
\#if(hf){
\# tmp = sim(N,ii,7,start = pos)
\# HF1[i] = tmp[[1]][LL]
\# HF2[i] = tmp[[2]][LL]
\#}
tmp = simSurvival(N,ii,start = pos)
SUV1[i] = tmp[1]
SUV2[i] = tmp[2]
}
sv1[ii] = mean(SUV1)
sv2[ii] = mean(SUV2)
svU1[ii] = quantile(SUV1,probs = 0.975)
svL1[ii] = quantile(SUV1,probs = 0.025)
svU2[ii] = quantile(SUV2,probs = 0.975)
svL2[ii] = quantile(SUV2,probs = 0.025)
ch1[ii] = mean(CVD1)
ch2[ii] = mean(CVD2)
chU1[ii] = quantile(CVD1,probs = 0.975)
chL1[ii] = quantile(CVD1,probs = 0.025)
chU2[ii] = quantile(CVD2,probs = 0.975)
chL2[ii] = quantile(CVD2,probs = 0.025)

```

Rush SK, MA X, Newton MA, Rose SL. A revised Markov Model evaluating oophorectomy at the time of benign hysterectomy: age 65 years revisited. Obstet Gynecol 2022;139.
The authors provided this information as a supplement to their article.
```

st1[ii] = mean(ST1)
st2[ii] = mean(ST2)
stU1[ii] = quantile(ST1,probs = 0.975)
stL1[ii] = quantile(ST1,probs = 0.025)
stU2[ii] = quantile(ST2,probs = 0.975)
stL2[ii] = quantile(ST2,probs = 0.025)
bc1[ii] = mean(BC1)
bc2[ii] = mean(BC2)
bcU1[ii] = quantile(BC1,probs = 0.975)
bcL1[ii] = quantile(BC1,probs = 0.025)
bcU2[ii] = quantile(BC2,probs = 0.975)
bcL2[ii] = quantile(BC2,probs = 0.025)
ov1[ii] = mean(ov1)
ov2[ii] = mean(OV2)
ovU1[ii] = quantile(OV1,probs = 0.975)
ovL1[ii] = quantile(OV1,probs = 0.025)
ovU2[ii] = quantile(0V2,probs = 0.975)
ovL2[ii] = quantile(0V2,probs = 0.025)
cc1[ii] = mean(CC1)
cc2[ii] = mean(CC2)
ccU1[ii] = quantile(CC1,probs = 0.975)
ccL1[ii] = quantile(CC1,probs = 0.025)
ccU2[ii] = quantile(CC2,probs = 0.975)
ccL2[ii] = quantile(CC2,probs = 0.025)
lc1[ii] = mean(LC1)
lc2[ii] = mean(LC2)
lcU1[ii] = quantile(LC1,probs = 0.975)
lcL1[ii] = quantile(LC1,probs = 0.025)
lcU2[ii] = quantile(LC2,probs = 0.975)
lcL2[ii] = quantile(LC2,probs = 0.025)

```
```


hf1[ii] = mean(HF1)

hf2[ii] = mean(HF2)

sum(CVD2 > CVD1) / nsim

```
\}
numc \(=6\)
L = c(svL1, chL1, stL1, bcL1, ccL1, lcL1, svL2, chL2, stL2, bcL2, ccL2, lcL2)

Rush SK, MA X, Newton MA, Rose SL. A revised Markov Model evaluating oophorectomy at the time of benign hysterectomy: age 65 years revisited. Obstet Gynecol 2022;139.
The authors provided this information as a supplement to their article.
```

$\mathrm{U}=\mathrm{c}(\mathrm{svU1}, \mathrm{chU1}, \mathrm{stU1}, \mathrm{bcU1}, \mathrm{ccU1}, \mathrm{lcU1}, \mathrm{svU} 2, \mathrm{chU2}, \mathrm{stU} 2, \mathrm{bcU2}, \mathrm{ccU} 2, \mathrm{lcU} 2)$
\#L1 = rep(c("HYS alone L", "HYS + BSO L"), each = 11 * numc)
\#U1 = rep(c("HYS alone U", "HYS + BSO U"), each = 11 * numc)
df = data.frame(val = c(sv1,ch1,st1,bc1,cc1,lc1,sv2,ch2,st2,bc2,cc2,lc2), $L=L, U=U$
,type = rep(c("HYS alone","HYS + BSO"),each = 11 * numc))

```
df\$typ = as.factor(c(rep(c("survival", "death by CVD", "death by stroke","death by BC", "d
eath by CC","death by LC"), each = 11),
    rep(c("survival","death by CVD", "death by stroke","death by BC","dea
th by CC","death by LC"),each = 11)))
df\$age \(=\) rep(45:55,2 * numc)

\section*{\#head(df)}
format(df, digits=3)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & val & L & U & type & & \\
\hline \#\# 1 & 0.63506 & 0.62204 & 0.64696 & alone & 1 & 45 \\
\hline \#\# 2 & 0.63540 & 0.62340 & 0.64726 & HYS & , & 46 \\
\hline \#\# 3 & 0.63560 & 0.62459 & 0.64686 & HYS & & 47 \\
\hline 4 & 0.63538 & 0.62360 & 0.64625 & HYS al & vival & 48 \\
\hline \#\# 5 & 0.63559 & 0.62420 & 0.64800 & HYS al & & 49 \\
\hline \#\# 6 & 0.65711 & 0.64619 & 0.66850 & HYS & survival & 50 \\
\hline \#\# 7 & 0.65609 & 0.64400 & 0.66726 & HYS & 1 & 51 \\
\hline 8 & 0.65483 & 0.64279 & 0.66761 & HYS & survival & 52 \\
\hline \#\# 9 & 0.65354 & 0.64188 & 0.66551 & HYS & survival & \\
\hline 10 & 0.65177 & 0.63984 & 0.66485 & HYS & al & \\
\hline 11 & 0.68517 & 0.67035 & 0.69826 & HYS a & al & \\
\hline 12 & 0.06467 & 0.05585 & 0.07461 & HYS alon & ath by CVD & 45 \\
\hline 13 & 0.06419 & 0.05594 & 0.07200 & HYS alo & ath by CVD & 46 \\
\hline 14 & 0.06317 & 0.05585 & 0.07190 & HYS alon & eath by CVD & 47 \\
\hline 15 & 0.06162 & 0.05460 & 0.06946 & HYS alo & ath by CVD & 48 \\
\hline 16 & 0.06125 & 0.05425 & 0.06865 & HYS alon & th by CVD & \\
\hline 17 & 0.05 & 0.05160 & 0.06681 & HYS alo & ath by CVD & \\
\hline 18 & 0.05856 & 0.05050 & 0.06660 & HYS alon & ath by CVD & \\
\hline 19 & 0.05 & 0.04 & 0.06 & YS a & ath by CVD & \\
\hline 20 & 0.05 & 0.04870 & 0.06785 & HYS alo & ath by CVD & \\
\hline 21 & 0.05664 & 0.04 & 0.06 & S a & death by CVD & \\
\hline 22 & 0.05338 & 0.04370 & 0.06415 & HYS alon & death by CVD & \\
\hline 23 & 0.02358 & 0.01920 & 0.02865 & HYS alo & death by stroke & \\
\hline 24 & 0.02265 & 0.01820 & 0.02705 & HYS alon & eath by stroke & \\
\hline 25 & 0.02189 & 0.01790 & 0.02610 & HYS alon & death by stroke & \\
\hline 26 & 0.02101 & 0.01720 & 0.02510 & HYS alo & eath by stroke & 48 \\
\hline 27 & 0.02017 & 0.01655 & 0.02450 & HYS alon & death by stroke & \\
\hline 28 & 0.01874 & 0.01510 & 0.02270 & HYS alon & death by stroke & \\
\hline 29 & 0.01812 & 0.01450 & 0.02200 & HYS alone & death by stroke & \\
\hline 30 & 0.01732 & 0.01340 & 0.02100 & HYS alon & death by stroke & \\
\hline 31 & 0.01673 & 0.01350 & 0.02060 & HYS alone & death by stroke & \\
\hline 32 & 0.01616 & 0.01280 & 0.02025 & HYS alon & death by stroke & \\
\hline \#\# 33 & 0.01 & 0.01165 & 0.01905 & HYS alon & death by stroke & \\
\hline
\end{tabular}

Rush SK, MA X, Newton MA, Rose SL. A revised Markov Model evaluating oophorectomy at the time of benign hysterectomy: age 65 years revisited. Obstet Gynecol 2022;139.
The authors provided this information as a supplement to their article.
©2022 American College of Obstetricians and Gynecologists.
\#\# 34
0.016430 .013850 .01930 HYS alone
\#\# \(35 \quad 0.016530 .01380 \quad 0.01930\) HYS alone
\#\# 360.016770 .014250 .01960 HYS alone
\#\# 370.016990 .014000 .01990 HYS alone
\#\# 380.017380 .014800 .02030 HYS alone
\#\# \(39 \quad 0.015490 .012850 .01815\) HYS alone
\#\# \(40 \quad 0.01580 \quad 0.01330 \quad 0.01850\) HYS alone
\#\# 410.016180 .013550 .01885 HYS alone
\#\# 420.016560 .014050 .01910 HYS alone
\#\# \(43 \quad 0.016870 .01400 \quad 0.01980\) HYS alone
\#\# \(44 \quad 0.01411 \quad 0.01160 \quad 0.01710\) HYS alone
\#\# \(450.008150 .00620 \quad 0.01000\) HYS alone
\#\# \(46 \quad 0.00808 \quad 0.006250 .01020\) HYS alone
\#\# 470.008130 .006200 .01000 HYS alone
\#\# 480.008120 .006300 .01015 HYS alone
\#\# 490.008200 .006350 .01000 HYS alone
\#\# 50 0.00751 0.00580 0.00940 HYS alone
\#\# 510.007590 .005550 .00955 HYS alone
\#\# 520.007580 .00590 0.00950 HYS alone
\#\# 530.007730 .006000 .00965 HYS alone
\#\# 540.007820 .00600 0.00980 HYS alone
\#\# 550.006760 .00480 0.00880 HYS alone
\#\# 560.029790 .02550 0.03445 HYS alone
\#\# \(57 \quad 0.029730 .025640 .03365\) HYS alone
\#\# 580.029440 .025350 .03325 HYS alone
\#\# \(59 \quad 0.029350 .02550 \quad 0.03330\) HYS alone
\#\# \(60 \quad 0.029160 .025850 .03275\) HYS alone
\#\# \(61 \quad 0.028630 .024790 .03260\) HYS alone
\#\# 620.028650 .024550 .03235 HYS alone
\#\# \(63 \quad 0.028610 .02490\) 0.03240 HYS alone
\#\# 640.028650 .024990 .03305 HYS alone
\#\# \(65 \quad 0.028730 .02470\) 0.03275 HYS alone
\#\# 660.026530 .02270 0.03040 HYS alone
\#\# 67 0.52818 0.40671 0.60421 HYS + BSO
\#\# 680.548010 .462300 .60467 HYS + BSO
\#\# 690.567260 .489810 .61360 HYS + BSO
\#\# 70 0.58062 0.51479 0.62228 HYS + BSO
\#\# 710.593630 .537030 .63020 HYS + BSO
\#\# 720.627350 .57508 0.65921 HYS + BSO
\#\# 730.636030 .594910 .66227 HYS + BSO
\#\# 740.642760 .609280 .66856 HYS + BSO
\#\# 750.647980 .622650 .66996 HYS + BSO
\#\# 760.653120 .628790 .67335 HYS + BSO
\#\# 770.689220 .66048 0.71121 HYS + BSO
\#\# 780.166070 .094590 .27453 HYS + BSO
\#\# 790.146270 .083530 .24121 HYS + BSO
\#\# 800.127040 .081840 .20496 HYS + BSO
\#\# 810.111680 .072040 .17436 HYS + BSO
\#\# 820.10018 0.06237 0.15744 HYS + BSO
death by BC 45
death by BC 46
death by BC 47
death by BC 48
death by BC 49
death by BC 50
death by \(B C 51\)
death by BC 52
death by BC 53
death by BC 54
death by BC 55
death by CC 45
death by CC 46
death by CC 47
death by CC 48
death by CC 49
death by CC 50
death by CC 51
death by CC 52
death by CC 53
death by CC 54
death by CC 55
death by LC 45
death by LC 46
death by LC 47
death by LC 48
death by LC 49
death by LC 50
death by LC 51
death by LC 52
death by LC 53
death by LC 54
death by LC 55
survival 45
survival 46
survival 47
survival 48
survival 49
survival 50
survival 51
survival 52
survival 53
survival 54
survival 55
death by CVD 45
death by CVD 46
death by CVD 47
death by CVD 48
death by CVD 49

Rush SK, MA X, Newton MA, Rose SL. A revised Markov Model evaluating oophorectomy at the time of benign hysterectomy: age 65 years revisited. Obstet Gynecol 2022;139.
The authors provided this information as a supplement to their article.


Rush SK, MA X, Newton MA, Rose SL. A revised Markov Model evaluating oophorectomy at the time of benign hysterectomy: age 65 years revisited. Obstet Gynecol 2022;139.
The authors provided this information as a supplement to their article.
©2022 American College of Obstetricians and Gynecologists.
Page 33 of 37
```


131 0.03045 0.02210 0.03975 HYS + BSO

death by LC 54

132 0.02763 0.01845 0.04005 HYS + BSO death by LC 55

```

Figure 2 (main manuscript) describes those mortality rates and survival proportions comparison for the two treatments with intervention time at age 45 to 55 .
```


reorder levels

foo <- df$typ
u <- levels(foo)
v <- c(1,2,5,4,3,6)
V <- v[foo]
bar <- reorder(foo, V)
df$typ <- bar

plot

```
```

$\mathrm{p}=\operatorname{ggplot}($ data $=\mathrm{df}, \operatorname{aes}(\mathrm{x}=\mathrm{age}, \mathrm{y}=\mathrm{val}))$ + geom_line(aes(y = val, color = type))+

```
\(\mathrm{p}=\operatorname{ggplot}(\) data \(=\mathrm{df}, \operatorname{aes}(\mathrm{x}=\mathrm{age}, \mathrm{y}=\mathrm{val}))\) + geom_line(aes(y = val, color = type))+
geom_line(aes(y = U,color = type)) +
geom_line(aes(y = U,color = type)) +
geom_line(aes(y = L,color = type)) +
geom_line(aes(y = L,color = type)) +
geom_point() +
geom_point() +
geom_ribbon(data = subset(df,type == "HYS alone"), aes(ymin = L, ymax = U, fill = type),
geom_ribbon(data = subset(df,type == "HYS alone"), aes(ymin = L, ymax = U, fill = type),
alpha = 0.5) +
alpha = 0.5) +
geom_ribbon(data = subset(df,type == "HYS + BSO"), aes(ymin = L, ymax = U, fill = type),
geom_ribbon(data = subset(df,type == "HYS + BSO"), aes(ymin = L, ymax = U, fill = type),
alpha = 0.5) +
alpha = 0.5) +
facet_wrap(.~typ,nrow = 4 )
facet_wrap(.~typ,nrow = 4 )
\#facet_wrap(.~typ,nrow = 4,scales = "free")
```

\#facet_wrap(.~typ,nrow = 4,scales = "free")

```
\(\mathrm{p}=\mathrm{p}+\) theme_classic() + labs(x="age at surgery", \(\mathrm{y}=\) " ") + scale_x_continuous(breaks =
c \((45,50,55)\) )
\#p
\#\# to do , use separate y axis scales; 1 for first 4 and another for next 2
part2 <- c( 1:22, 67:88 )
part1 <- setdiff( 1:132, part2)
ptop \(=\) ggplot (data \(=d f[p a r t 1\),\(] , aes (x=a g e, y=v a l))+\) geom_line(aes (y = val, color = type
))+
geom_line(aes(y = U,color = type)) +
geom_line(aes(y = L,color = type)) +
geom_point() +
geom_ribbon(data = subset(df[part1,],type == "HYS alone"), aes(ymin = L, ymax = U, fill =
type), alpha = 0.5) +
geom_ribbon(data = subset(df[part1,],type == "HYS + BSO"), aes(ymin = L, ymax = U, fill =
type), alpha = 0.5) +
facet_wrap(.~typ,nrow = 2) + ylim(0,.1)

Rush SK, MA X, Newton MA, Rose SL. A revised Markov Model evaluating oophorectomy at the time of benign hysterectomy: age 65 years revisited. Obstet Gynecol 2022;139.
The authors provided this information as a supplement to their article.
©2022 American College of Obstetricians and Gynecologists.
```

\#ptop = ptop + theme_classic() + Labs(x="age at surgery", y = "") + scale_x_continuous(br
eaks = c(45,50,55))
\#ptop = ptop + theme_classic() + Labs(x="age at surgery", y = "") + scale_x_continuous(br
eaks=NULL)
ptop = ptop + labs(x="", y = "") + scale_x_continuous(breaks=c(45, 50,55))
pbot = ggplot(data = df[part2,], aes(x = age,y=val)) + geom_line(aes(y = val,color = type
))+
geom_line(aes(y = U,color = type)) +
geom_line(aes(y = L,color = type)) +
geom_point() +
geom_ribbon(data = subset(df[part2,],type == "HYS alone"), aes(ymin = L, ymax = U, fill =
type), alpha = 0.5) +
geom_ribbon(data = subset(df[part2,],type == "HYS + BSO"), aes(ymin = L, ymax = U, fill =
type), alpha = 0.5) +
facet_wrap(.~typ,nrow = 1) + ylim(0,.75)
pbot = pbot + labs(x="age at surgery", y = "") + scale_x_continuous(breaks = c(45,50,55))
ptop/pbot

```

Rush SK, MA X, Newton MA, Rose SL. A revised Markov Model evaluating oophorectomy at the time of benign hysterectomy: age 65 years revisited. Obstet Gynecol 2022;139.
The authors provided this information as a supplement to their article.

```

ggsave("band-multi.pdf")

Saving 5 x 4 in image

```

\section*{Additional Control Calculations}

To assess the effect of using non-significant hazard ratios, we repeated the calculations above but forced hazard ratios to unity if their reported confidence intervals contain unity. (see Control Figure 1)

Rush SK, MA X, Newton MA, Rose SL. A revised Markov Model evaluating oophorectomy at the time of benign hysterectomy: age 65 years revisited. Obstet Gynecol 2022;139.
The authors provided this information as a supplement to their article.


Control Figure 1: Results of a supporting control computation for comparison analogous to Fig 2 (main), but in which we have removed any factors for which prior work does not establish a nonsignificant hazard ratio.

To assess the effect of using a flexible model of hazard ratio change for interventions between age 45 and 55, we repeated the calculations using a step-function change in hazard ratios, with a step at age 50. (See Figure 3 in main manuscript)

Rush SK, MA X, Newton MA, Rose SL. A revised Markov Model evaluating oophorectomy at the time of benign hysterectomy: age 65 years revisited. Obstet Gynecol 2022;139.
The authors provided this information as a supplement to their article.```

