Supplementary Digital Content 2. The details for the deep learning model and the heap map generation.
As described in the section of the proposed system, the detailed descriptions of the used CNN model as shown below. The convolution layer can be expressed as:
	
	(1)


where  is the output for the l-th layer,  is the weight collection of CC kernels in the l-th layer, and  is the bias term. All layers would then add an activation function. A rectified linear unit (ReLU) [1] was used in this study. ReLU is represented as:
	.
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Compared to the traditional CNN model, a special building block of ResidualNet is defined as:
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where x and y are the input and output vectors of the layer, respectively.  is the residual mapping that prevents the gradient from vanishing in the deeper network.  is used to match dimensions when the dimensions of x and  are not the same[2]. It also increases the number of bottleneck layers to improve the efficiency of the neural network when its depth exceeds 18 or 50. Next, a Softmax function [3] is used to produce a normalized probability-based output, which can be defined as:
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In the heat map generative phase, Grad-CAM [4] was used to obtain visual explanations from the trained model. Backpropagation is important for producing k feature maps of the convolution layer .  is the score before Softmax for class c. By calculating the gradients (i.e., ), we can obtain the vital neurons of class .
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In contrast to CAM [5], Grad-CAM is not involved in global average pooling and training. In addition, it also produces the localization map directly for the modified image classification architectures using the following equation:
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More details about CNN and Grad-CAM can be found in several previous studies [4, 6, 7].
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