Mathematical steps to calculate ECBF, knowing $\mathrm{Hb}, \mathrm{SaO}_{2}, \mathrm{CO}$ and VO_{2}

We start from the two following equations describing the steady-state:

$$
\left\{\begin{array}{c}
S_{v} O_{2}=S_{a} O_{2} * 1-\frac{V O_{2}}{D O_{2}} \\
S_{a} O_{2} * Q=S_{E C M O} O_{2} * E C B F+S_{v} O_{2} *(Q-E C B F)
\end{array}\right.
$$

$$
\left\{\begin{array}{c}
S_{v} \mathrm{O}_{2}=\mathrm{S}_{a} \mathrm{O}_{2}-\frac{V \mathrm{O}_{2}}{k * \mathrm{Hb} * 10 * Q} \\
S_{v} \mathrm{O}_{2} *(Q-E C B F)+S_{E C M O} O_{2} * E C B F=S_{a} \mathrm{O}_{2} * \mathrm{CO}
\end{array}\right.
$$

By substituting the first equation into the second the following relationship is obtained:

$$
\left(S_{a} O_{2}-\frac{V O_{2}}{k * H b * 10 * Q}\right) *(Q-E C B F)+S_{E C M O} O_{2} * E C B F=S_{a} O_{2} * Q
$$

The following mathematical steps are required to solve this equation for $\mathrm{S}_{\mathrm{a}} \mathrm{O}_{2}$:

$$
\begin{gathered}
\left(S_{a} O_{2} * k * H b * 10 * Q-V O_{2}\right) *(Q-E C B F)+S_{E C M O} O_{2} * k * H b * 10 * Q * E C B F \\
=S_{a} O_{2} * k * H b * 10 * Q * Q
\end{gathered}
$$

Dividing each term by Q :

$$
\begin{aligned}
& \left(S_{a} O_{2} * k * H b * 10-\frac{V O_{2}}{Q}\right) *(Q-E C B F)+S_{E C M O} O_{2} * k * H b * 10 * E C B F \\
& =S_{a} O_{2} * k * H b * 10 * Q \\
& S_{a} O_{2} * k * H b * 10 * Q-S_{a} O_{2} * k * H b * 10 * E C B F-V O_{2}+\frac{V O_{2} * E C B F}{Q}+S_{E C M O} O_{2} * k * H b * 10 \\
& * E C B F=S_{a} O_{2} * k * H b * 10 * Q
\end{aligned}
$$

Removing the identical terms in the two sides of the equation:
$\mathrm{S}_{\mathrm{a}} \mathrm{O}_{2} * k * \mathrm{Hb} * 10 * E C B F=\mathrm{S}_{\mathrm{ECMO}} \mathrm{O}_{2} * k * \mathrm{Hb} * 10 * E C B F+\frac{\mathrm{VO}}{2}$ *ECBF$-\mathrm{VO}_{2}$

Rearranging the equation:
$E C B F *\left[(k * H b * 10) *\left(\mathrm{~S}_{a} \mathrm{O}_{2}-\mathrm{S}_{\mathrm{ECMO}} \mathrm{O}_{2}\right)-\frac{V \mathrm{O}_{2}}{Q}\right]=-\mathrm{VO}_{2}$

And finally solving for ECBF and assuming $\mathrm{S}_{\mathrm{ECM}} \mathrm{O}_{2}=1$ we get to equation 5
$E C B F=\frac{V O_{2}}{\frac{\nabla O_{2}}{Q}+(k * H b * 10) *\left(1-S_{a} O_{2}\right)}$

Mathematical steps to calculate ECBF, knowing $\mathrm{Hb}, \mathrm{CO}, \mathrm{S}_{\mathbf{v}} \mathrm{O}_{2}$ and VO_{2}

We start from the two following equations describing the steady-state:

$$
\left\{\begin{array}{c}
S_{v} O_{2}=S_{a} O_{2} * 1-\frac{V O_{2}}{D O_{2}} \\
S_{a} O_{2} * Q=S_{E C M O} O_{2} * E C B F+S_{v} O_{2} *(Q-E C B F)
\end{array}\right.
$$

$$
\left\{\begin{array}{c}
S_{v} \mathrm{O}_{2}=\mathrm{S}_{a} \mathrm{O}_{2}-\frac{\mathrm{VO}_{2}}{k * \mathrm{Hb} * 10 * Q} \\
\mathrm{~S}_{a} \mathrm{O}_{2} * Q=S_{E C M O} \mathrm{O}_{2} * E C B F+S_{v} \mathrm{O}_{2} *(Q-E C B F)
\end{array}\right.
$$

$$
\left\{\begin{array}{c}
S_{a} \mathrm{O}_{2}=\mathrm{S}_{v} \mathrm{O}_{2}+\frac{\mathrm{VO}_{2}}{k * \mathrm{Hb} * 10 * Q} \\
S_{a} O_{2} * Q=S_{E C M O} \mathrm{O}_{2} * E C B F+S_{v} \mathrm{O}_{2} *(Q-E C B F)
\end{array}\right.
$$

By substituting the first equation into the second the following relationship is obtained:

$$
\left(S_{v} O_{2}+\frac{V O_{2}}{k * H b * 10 * Q}\right) * C O=S_{E C M O} O_{2} * E C B F+S_{v} O_{2} * Q-S_{v} O_{2} * E C B F
$$

The following mathematical steps are required to solve this equation for ECBF:
$\mathrm{S}_{v} \mathrm{O}_{2} * Q+\frac{\mathrm{VO}_{2}}{k * \mathrm{Hb}^{*} 10}=\mathrm{S}_{E C M O} \mathrm{O}_{2} * E C B F+\mathrm{S}_{v} \mathrm{O}_{2} * Q-\mathrm{S}_{v} \mathrm{O}_{2} * E C B F$

Removing the identical terms in the two sides of the equation:
$\frac{\mathrm{VO}_{2}}{k * \mathrm{Hb} * 10}=\mathrm{S}_{\mathrm{ECMO}} \mathrm{O}_{2} * E C B F-\mathrm{S}_{v} \mathrm{O}_{2} * E C B F$

And assuming $\mathrm{S}_{\mathrm{ECMO}} \mathrm{O}_{2}=1$
$\frac{\mathrm{VO}_{2}}{k * \mathrm{Hb} * 10}=E C B F-\mathrm{S}_{v} \mathrm{O}_{2} * E C B F$

And finally solving for ECBF, we get to equation 6:
$E C B F=\frac{V O_{2}}{k * H b * 10 *\left(1-S_{v} O_{2}\right)}$

