Online Supplemental Files for: **Hilton RS, Hauschildt K, Shah M, Kowalkowski MA, Taylor SP.** Assessment of social determinants of health in post-sepsis mortality and readmission: a scoping review

PRISMA checklist

Online Supplement Table 1. Search strategy used to identify eligible articles. Online Supplement Table 2. Eligible studies that did not include social determinants of health Online Supplement Table 3. Additional data from eligible studies that did include social determinants of health

Online Supplement Table 4. Characteristics of studies including versus not including SDH in evaluation post-sepsis mortality or readmission.

Online Supplement Appendix 1. References for eligible studies that did not include social determinants of health

Study Protocol

Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) Checklist

SECTION	ITEM	PRISMA-ScR CHECKLIST ITEM	REPORTED ON PAGE #
TITLE			
Title	1	Identify the report as a scoping review.	1
ABSTRACT			
Structured summary	2	Provide a structured summary that includes (as applicable): background, objectives, eligibility criteria, sources of evidence, charting methods, results, and conclusions that relate to the review questions and objectives.	2-3
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known. Explain why the review questions/objectives lend themselves to a scoping review approach.	4
Objectives	4	Provide an explicit statement of the questions and objectives being addressed with reference to their key elements (e.g., population or participants, concepts, and context) or other relevant key elements used to conceptualize the review questions and/or objectives.	4
METHODS			
Protocol and registration	5	Indicate whether a review protocol exists; state if and where it can be accessed (e.g., a Web address); and if available, provide registration information, including the registration number.	supplement
Eligibility criteria	6	Specify characteristics of the sources of evidence used as eligibility criteria (e.g., years considered, language, and publication status), and provide a rationale.	5
Information sources*	7	Describe all information sources in the search (e.g., databases with dates of coverage and contact with authors to identify additional sources), as well as the date the most recent search was executed.	5
Search	8	Present the full electronic search strategy for at least 1 database, including any limits used, such that it could be repeated.	Appendix
Selection of sources of evidence†	9	State the process for selecting sources of evidence (i.e., screening and eligibility) included in the scoping review.	6
Data charting process‡	10	Describe the methods of charting data from the included sources of evidence (e.g., calibrated forms or forms that have been tested by the team before their use, and whether data charting was done independently or in duplicate) and any processes for obtaining and confirming data from investigators.	6
Data items	11	List and define all variables for which data were sought and any assumptions and simplifications made.	6, appendix
Critical appraisal of individual sources of evidence§	12	If done, provide a rationale for conducting a critical appraisal of included sources of evidence; describe the methods used and how this information was used in any data synthesis (if appropriate).	6

SECTION	ITEM	PRISMA-ScR CHECKLIST ITEM	REPORTED ON PAGE #
Synthesis of results	13	Describe the methods of handling and summarizing the data that were charted.	7
RESULTS			
Selection of sources of evidence	14	Give numbers of sources of evidence screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally using a flow diagram.	tables
Characteristics of sources of evidence	15	For each source of evidence, present characteristics for which data were charted and provide the citations.	tables
Critical appraisal within sources of evidence	16	If done, present data on critical appraisal of included sources of evidence (see item 12).	tables
Results of individual sources of evidence	17	For each included source of evidence, present the relevant data that were charted that relate to the review questions and objectives.	tables
Synthesis of results	18	Summarize and/or present the charting results as they relate to the review questions and objectives.	tables
DISCUSSION			
Summary of evidence	19	Summarize the main results (including an overview of concepts, themes, and types of evidence available), link to the review questions and objectives, and consider the relevance to key groups.	9
Limitations	20	Discuss the limitations of the scoping review process.	12
Conclusions	21	Provide a general interpretation of the results with respect to the review questions and objectives, as well as potential implications and/or next steps.	12
FUNDING			
Funding	22	Describe sources of funding for the included sources of evidence, as well as sources of funding for the scoping review. Describe the role of the funders of the scoping review.	1

From: Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews (PRISMAScR): Checklist and Explanation. Ann Intern Med. 2018;169:467–473. doi: 10.7326/M18-0850.

Online Supplement Table 1. Initial Search strategy used to identify eligible articles

(hospital readmission[MeSH Terms])) OR (hospital readmissions[MeSH Terms])) OR (patient readmission[MeSH Terms])) OR (readmission, hospital[MeSH Terms])) OR (patient readmissions[MeSH Terms])) OR (late mortality[Title/Abstract])) OR (long-term mortality[Title/Abstract])) AND (((((((((((sepsis[MeSH Terms]) OR (sepsis, severe[MeSH Terms])) OR (sepsis syndrome[MeSH Terms])) OR (sepsis syndrome[MeSH Terms])) OR (septicemia[MeSH Terms])) OR (septicemia[MeSH Terms])) OR (septicemia[Title/Abstract])) OR (sepsis[Title/Abstract])) OR (septicemia[Title/Abstract])) OR (sepsis[Title/Abstract])) OR (septicemia[Title/Abstract])) OR (sepsis[Title/Abstract])) OR (sepsis[Title/Abstract])) OR (septic*[Title/Abstract]))) Filters: English, from 1992/1/1 - 2021/5/1

Study ID	Year of publication	Cohort size (n=?)	Multicenter (y/n)	Country of data source
Angus, 2004	2004	1,690	yes	Multiple
Bozza, 2007	2007	60	yes	Brazil
Brakenridge, 2019	2019	301	no	U.S.
Braun, 2004	2004	>10000	yes	US
Buendgens, 2017	2017	219	no	Germany
Burdick, 2020	2020	17,758	yes	U.S.
Chao, 2014	2014	15,535	yes	Taiwan
Contrin, 2013	2013	349	no	Brazil
Danese, 2006	2006	22,130	yes	U.S.
Dean, 2006	2006	17,728	yes	U.S.
Deb, 2019	2019	170,571	yes	U.S.
DeMerle & Royer, 2017	2017	472	yes	U.S.
DeMerle & Vincent, 2017	2017	26,561	yes	U.S.
Demiralp, 2017	2017	100-1000	yes	U.S.
Dick, 2012	2012	17,537	yes	U.S.
Dreiher, 2012	2012	5,155	yes	Israel
Drewry, 2014	2014	335	no	US
Flesishman, 2021	2021	116,507	yes	Germany
Gilmore, 2015	2015	98	no	U.S.
Guirgis, 2021	2021	104	no	U.S.
Haas, 2021	2021	532	yes	Multiple
Henriksen, 2017	2017	1,713	no	Denmark
Honselmann, 2015	2015	1,406	no	Germany
Jia, 2021	2021	4,370	no	U.S.
Jones, 2014	2014	120,943	yes	U.S.

Kaukonen, 2014	2014	101,064	yes	Australia and New Zealand
Khoury, 2017	2017	259	no	Israel
Kim, 2019	2019	274	no	South Korea
Kim, 2021	2010	4,625		South Korea
			yes	
Laupland, 2005	2005	4,845	yes	Canada
Lee, 2008	2008	525	no	U.S.
Li, 2018	2018	112	no	China
Lichtenauer, 2017	2017	348	no	Germany
Linder, 2014	2014	2,289	no	Canada
Liu, 2014	2014	6,344	yes	U.S.
Liu, 2021	2021	1,405	yes	U.S.
Meurer, 2010	2010	50	no	US
Nesseler, 2013	2013	96	no	france
Norman, 2017	2017	633,407	yes	U.S.
Ou, 2016	2016	>10000	yes	Taiwan
Perner, 2014	2014	804	yes	dutch
Prescott, 2015	2015	46,575	yes	U.S.
Prescott, 2015	2015	2,843	yes	U.S.
Prescott, 2016	2016	3,029	yes	U.S.
Prescott, 2017	2017	28,618	yes	U.S.
Quartin, 1997	1997	1,505	yes	U.S.
Rahmel, 2020	2020	83,974	yes	Germany
Ranzani, 2013	2013	229	no	Brazil
Rice Crescencio, 2012	2012	127	no	U.S.
Rice, 2013	2013	56,527	yes	U.S.
Rygård, 2016	2016	1,005	yes	Denmark
Sasse, 1995	1995	153	no	US
Scheer, 2017	2017	14,115	no	Germany

Schmidt, 2020	2020	1,975	no	Germany
Singh, 2019	2019	1,068	no	U.S.
Stenholt, 2021	2021	662	no	Denmark
Stiermaier, 2013	2013	139	yes	Multiple
Storgaard, 2013	2013	212	no	Denmark
Styrvoky, 2015	2015	230	no	U.S.
Styrvoky, 2016	2016	1,049	no	U.S.
Tacke, 2014	2014	299	no	Germany
Tacke, 2016	2016	311	no	Germany
Taylor, 2020	2020	189	yes	U.S.
Tsaganos, 2016	2016	200	yes	Greece
Tsen, 2015	2015	990	yes	non-US
Vashi, 2013	2013	4,028,555	yes	U.S.
Vasile, 2013	2013	926	no	U.S.
Wang, 2014	2014	29,644	yes	U.S.
Weinreich, 2017	2017	1,355	no	US
Weycker, 2003	2003	16,019	yes	U.S.
Whiles, 2016	2016	7,071	no	US
Yende, 2014	2014	823,462	yes	U.S.
Yende, 2019	2019	483	yes	U.S.
Zhao, 2021	2021	183	no	China
Zilberberg, 2015	2015	1,697	no	U.S.

Online Supplement Table 3. Additional data from eligible studies that did include social determinants of health

	Cohort description	method and	Social determinants included	Social determinan t assessmen t method (EHR, survey, census)	Social determinant level (individual or neighborhood)	Missing data on social determinan ts (low, high)	assessme nt	SDOH independentl y associated with outcomes
University Hospital, Denmark, Nov 2008 - Dec 2010 sepsis cohort, SC, n= 387	Adult sepsis, severe sepsis, septic shock patients (ICU); definitions per Surviving Sepsis Campaign	mortality post ICU admission 80-day	2.Income 3.Cohabitatio n status	1.Database (Population' s Education Register) 2.Database (Income Statistic Register) 3.Database (Population Statistics Register)	1.Individual 2.Individual 3.Individual	Low	regression	30-day mortality: income (low)

Leu, 2013 (abstract)	Medical and Mental Health Center, Bronx, NY,	Survivors of severe sepsis and septic shock (medical- ICU)	mortality	1.Ethnicity	1.EHR	1.Individual	Not reported	Yes, logistics regression analysis, mutlivariat e analysis	30-day readmission: Latino background 180-day readmission; Latino background
Ahmad, 2014 (abstract)	Costs and Utilization	Patients hospitalized for severe sepsis; ICD- 9-CM	,	1.Homelessne ss	1.Database	1.Individual	Not reported	Yes, multivariat e logistic regression	None
Davis, 2014	May 6 2007- May 5 2008, SC, n= 1028	hospitalized for sepsis between May 6 2007-	5-year mortality	1.Race	1.Not reported	1.Individual	Not reported	Kaplan- Meier Survival Rate estimates	Mortality: Race (higher risk if Indigenous (Aboriginal Australian))

Bath, 2019 (abstract)	Nationwide Inpatient Sample data, 2012-2014, MC, n= 3,082,888		readmission	1.Payer type 2.Median income per zip code 3.Residential type (metro, etc.)		1.Individual 2.Neighborhood 3.Neighborhood	Not reported		30-day readmission rate: payer type (under Medicare), residential type (Living in Metropolitan areas)
Davis, 2011	Royal Darwin Hospital, Tiwi, Darwin, NT, May 6 2007- May 5 2008, SC, n= 1090	probable or definite infection and	mortality	1.Race	1.Not reported	1.Individual	Not reported	Yes, univariate and multivariat e regression	None
Abu-Kaf, 2018	Israeli Sepsis Group (ISR- SEPSIS) database, 2003-2011, MC, n= 409	survivors discharged from ICU;	Mortality Long-term mortality (2 year)	1.Marital status	1.Not reported	1.Individual	Not reported		2-year mortality: marital status
Chao, 2016	Taiwan's National Health Insurance Research Database (NHIRD), 1995-2011, MC, n= 272,879	older, with first-time ICU hospitalizati on for	mortality 2-year	1.Monthly income 2.Urbanizatio n		1.Individual 2.Neighborhood	Not reported	Yes, univariate and multivariat e analysis	None

		during hospitalizati on.							
	the University of Pennsylvania, Dec 2007 - Jan 2010, SC, n= 997	admitted from the ED with septic shock, defined as a serum lactate level ≥4 mmol/L or systolic blood pressure <90 mm Hg after volume resuscitation or use of a	(treat-and- release) All-cause hospital readmission to any UPHS hospital within 30 days of discharge after the		1.EHR	1.Individual	Low	Yes, multivariat e logistic regression	None
Lopes, 2010	Hospitalar Lisboa Norte, Infectious Disease Intensive Care Unit, July 2002 - June 2007, SC, n= 234	survivors	2-year mortality	1.Race	1.Unit database/E HR	1.Individual	Not reported	Yes, univariate and multivariat e regression	None

		Medicine consensus.							
Shankar- Hari, 2019	Intensive Care National Audit & Research Centre (ICNARC) Case Mix Programme, April 1, 2009 - March 31, 2014, MC, n= 94,748	patients sepsis	All-cause long-term mortality (up to 6 years)	1.Race	1.Database	1.Individual	Low	regression analysis	Mortality: some or total dependency, (from KH: race as well (Asian and other less likely than White, I believe) They only intermittently mention in the abstract/findin gs, which is a little odd?)
Gameiro, 2020	Division of Intensive Medicine of the Centro Hospitalar Universitário Lisboa Norte, Jan 2008 - Dec 2014, MC, n= 256	years or older with a diagnosis of sepsis at admission to the Division of Intensive	mortality (5	1.Race	1.EHR	1.Individual	Low	Yes, multivariat e and univariate regression analysis	None

(, , , , , , , , , , , , , , , , , , ,	University of Florida Hospital, August 2013 - December 2015, SC, n= 4,711	years or older admitted to university	(multiple admissions for sepsis)	1.Race	1.EHR	1.Individual	reported	Uses univariate and bivariate chi-square analysis	Race
Chang, 2015	Healthcare Costs and Utilization Project's - California State Inpatient Database, 2009-2011, MC, n= 240,198 (Sepsis hospitalizatio ns)			income by ZIP Code	3.Database	1.Individual 2.Neighborhood 3.Neighborhood 4.Individual	Not reported	logistic regression analysis	Higher odds of 20-day readmission; Race (Black, Native American), lower income, and residence in metropolitan areas
Donnelly, 2015	UHC clinical database, MC, n= 345,657	sepsis,	7-day readmission s 30-day readmission s	Population setting (metro)4. Census region	1.EHR, linkage 2.EHR, linkage 3.EHR, linkage 4.EHR, linkage	1.Individual 2.Individual 3.Neighborhood 4.Neighborhood	Not reported		Readmission: Medicaid

Goodwin, 2015	Cost and Utilization Project State Inpatient Databases (CA, FL, NY),		readmission s		1.Database 2.Database		Not reported	multivariat e logistic	30-day readmission; Race (Black), insurance type (Medicare and/or Medicaid)
Galiatsatos, 2020	Hopkins Bayview Medical Center, 2017, SC, n= 647	age 18 who were discharged			2.Database	1.Individual 2.Individual 3.Neighborhood	Not reported	multivariab le logistic	30-day readmission; Area Deprivation Index (Neighborhoo d disadvantage)
Rice, 2014 (abstract)	Cost and Utilization Project database (FL), 2010, MC, n= not reported		readmission	1.Race 2.Income 3.Insurance	2.Database	1.Individual 2.Individual 3.Individual	Not reported	le logistic regression	30-day readmission; race (Hispanic, black) Protective - Insurance (commercial or no insurance), discharge location (discharge to hospice)

Lemay, 2014		age 65 discharged	mortality >365 day mortality		1.Database 2.Database 3.Database	2.Individual		Yes, cox proportion al hazard regression	None
Sun, 2016	University of Pennsylvania Health System, May 2012 - July 2012, MC, n= 444		readmission	1.Race 2.Marital Status 3.Insurance status	1.Not reported 2.Not reported 3.Not reported	1.Individual 2.Individual 3.Individual	Not reported	Yes, multivariat e logistic regression	None
Jones, 2015	University of Pennsylvania Health System, July 10 - July 2012, MC, n= 3,620		readmission	1.Race 2.Marital status 3.Insurance status	1.Database; EHR 2.Database; EHR 3.Database; EHR	1.Individual 2.Individual 3.Individual	Not reported	Yes, multivariat e logistic regression	None

Courtright, 2020	Beneficiary Summary file, Medicare Inpatient Standard Analytic File (SAF), Outpatient	who have received at least 1 home health care visit within 1 week of discharge; ICD-9 CM	mortality Hospitalizatio	2.Medicaid	census	1.Individual 2.Individual	Low	Yes, multivariat e logistic regression	None
Oh, 2021	Health Insurance database, South Korea, 2011 - 2014,	survivors admitted for sepsis or	mortality	1.Residence at diagnosis of sepsis (Seoul, other metro city, or other area) 2.Income level		1.Neighborhood 2.Individual	Not reported	Yes, multivariab le Cox regression model	5-year all cause mortality; residence at diagnosis of sepsis (other metropolitan city [than Seoul], other area), follow- up after discharge (follow-up in the same hospital).

Shankar- Hari, 2020	Care National	Sepsis-3 criteria	Unplanned readmission (1 year) 1-year mortality			1.Individual 2.Neighborhood	Not reported	multivariab le logistic regression	Unplanned readmission & 1-year mortality; IMD2015 in England quintiles (Most deprived)
Gadre, 2019	Healthcare Cost and Utilization Project National Readmission Data, 2013 - 2014, MC, n= 1,030,335	Sepsis survivors; ICD-9 CM	30-day readmission		1.Database 2.Database	1.Individual 2.Neighborhood	Low	multivariab le regression model	30-day readmission; payer information (decreased risk for private insurance and self-pay), decreased risk for higher SES
Bowles, 2020	beneficiaries national dataset, July 1 2013 - June 30 2014, MC,	survivors	ns (Out to 30-day)	1.Race/ethnici ty	1.Database	1.Individual	Low	Yes, multivariat e logistic regression	None

		ICD-9 CM, Angus							
	Hospital, SC, n= 3390	with ICD-9 Clinical Modification code for either severe sepsis (995.92) or septic shock (785.52). Beginning in 2015, using ICD-10 Clinical Modification codes R65.20 (severe sepsis) and R65.21 (septic shock)	Readmissio n (1-year)	3. Income using zip code	to Census database	1. individual 2. individual 3. neighborhood	Low	but no causal	Increased readmission for Black race, decreased for uninsured, no differences for mortality
Farrah, 2021	Dataset in Canada, MC, n= 196,922	Revision- coded	Readmissio n (1-year)		linkage to national	 Neighborhood Neighborhood Neighborhood/Indivi dual 	Not Reported	Propensity score	None

sepsis) and without (nonsevere	social factor	rs)		

Online Supplement Table	e 4. Characteristics of	studies including (N = 28)	versus not including (N =						
75) social determinants of health in evaluation									
Study feature	No SDH n (%)	Included SDH, n (%)	Included SDH other than race (N = 19), n (%)						
Year									
1990-2000	2 (3%)	0 (0%)	0 (0%)						
2000-2010	9 (12%)	1 (4%)	0 (0%)						
2010-present	64 (85%)	27 (96%)	19 (100%)						
Cohort size									
<100	4 (5%)	0 (0%)	0 (0%)						
100-<1000	29 (39%)	8 (29%)	4 (21%)						
1,000-10,000	20 (27%)	6 (21%)	3 (16%)						
>10,000	22 (29%)	14 (50%)	12 (63)						
Multicenter	41 (55%)	19 (68%)	5 (26%)						
Country of data									
source									
United States	41 (55%)	17 (61%)	14 (74%)						
Non-U.S.	34 (45%)	11 (39%)	7 (37%)						

Online Supplement Appendix 1. References for eligible studies that did not include social determinants of health

- 1. Angus DC, Laterre PF, Helterbrand J, et al. The Effect of Drotrecogin Alfa (activated) on Long-Term Survival after Severe Sepsis HHS Public Access. *Crit Care Med.* 2004;32(11):2199-2206.
- 2. Bozza FA, Salluh JI, Japiassu AM, et al. Cytokine profiles as markers of disease severity in sepsis: A multiplex analysis. *Crit Care*. 2007;11:R49. doi:10.1186/cc5783
- Brakenridge SC, Efron PA, Cox MC, et al. Current Epidemiology of Surgical Sepsis: Discordance between Inpatient Mortality and 1-year Outcomes. *Ann Surg.* 2019;270(3):502-510. doi:10.1097/SLA.00000000003458
- Braun L, Aylin M;, Riedel A, Cooper LM. Severe Sepsis in Managed Care: Analysis of Incidence, One-Year Mortality, and Associated Costs of Care. *J Manag Care Pharm*. 2004;10(6):521-530. www.amcp.org
- Buendgens L, Yagmur E, Bruensing J, et al. Growth Differentiation Factor-15 Is a Predictor of Mortality in Critically III Patients with Sepsis. *Dis Markers*. 2017;2017. doi:10.1155/2017/5271203
- 6. Burdick H, Pino E, Gabel-Comeau D, et al. Effect of a sepsis prediction algorithm on patient mortality, length of stay and readmission: A prospective multicentre clinical outcomes evaluation of real-world patient data from US hospitals. *BMJ*. 2020;27:e100109. doi:10.1136/bmjhci-2019-100109
- 7. Chao PW, Shih CJ, Lee YJ, et al. Association of postdischarge rehabilitation with mortality in intensive care unit survivors of sepsis. *Am J Respir Crit Care Med.* 2014;190(9):1003-1011. doi:10.1164/rccm.201406-1170OC
- 8. Crescencio JCR, Leu M, Balaventakesh B, Loganathan R. Readmissions Among Patients With Severe Sepsis/Septic Shock Among Inner-City Minority New Yorkers. *Chest*. 2012;142(4):286A. doi:10.1378/chest.1390287
- 9. Danese MD, Griffiths RI, Dylan M, Yu HT, Dubois R, Nissenson AR. Mortality differences among organisms causing septicemia in hemodialysis patients. *Hemodial Int.* 2006;10:56-62.
- 10. Dean NC, Bateman KA, Donnelly SM, Silver MP, Snow GL, Hale D. Improved clinical outcomes with utilization of a community-acquired pneumonia guideline. *Chest*. 2006;130(3):794-799. doi:10.1378/chest.130.3.794
- 11. Deb P, Murtaugh CM, Bowles KH, et al. Does Early Follow-Up Improve the Outcomes of Sepsis Survivors Discharged to Home Health Care? *Med Care*. 2019;57(8):633-640. www.lww-medicalcare.com
- 12. Demerle KM, Royer SC, Mikkelsen ME, Prescott HC. Readmissions for recurrent sepsis: New or relapsed infection? *Crit Care Med.* 2017;45(10):1702-1708. doi:10.1097/CCM.0000000002626
- DeMerle KM, Vincent BM, Iwashyna TJ, Prescott HC. Increased healthcare facility use in veterans surviving sepsis hospitalization. *J Crit Care*. 2017;42:59-64. doi:10.1016/j.jcrc.2017.06.026

- 14. Demiralp B, He F, Koenig L, Hengesbach D, Prister J. A Regional Analysis of Patient Outcomes and Medicare Payments for Sepsis Patients Treated in Long-Term Care Hospitals and Skilled Nursing Facilities. In: C23. CRITICAL CARE: WHAT CAN BE MEASURED CAN BE IMPROVED - INVESTIGATING THE EPIDEMIOLOGY AND OUTCOMES OF PATIENTS WITH ACUTE CRITICAL ILLNESS. American Thoracic Society International Conference Abstracts. American Thoracic Society; 2017:A5023-A5023. doi:doi:10.1164/ajrccmconference.2017.195.1_MeetingAbstracts.A5023
- 15. Dick A, Liu H, Zwanziger J, et al. Long-term survival and healthcare utilization outcomes attributable to sepsis and pneumonia. *BMC Health Serv Res*. 2012;12(432). doi:10.1186/1472-6963-12-432
- Dreiher J, Almog Y, Sprung CL, et al. Temporal trends in patient characteristics and survival of intensivecare admissions with sepsis: A multicenter analysis. *Crit Care Medicine*. 2012;40(3):855-860.
- Drewry A, Samra N, Skrupky L, Fuller B, Compton S, Hotchkiss R. Persistent lymphopenia after diagnosis of sepsis predicts mortality. *Shock*. 2014;42(5):383-391. doi:10.1097/SHK.0000000000234
- Gilmore EJ, Gaspard N, Choi HA, et al. Acute brain failure in severe sepsis: a prospective study in the medical intensive care unit utilizing continuous EEG monitoring. *Intensive Care Med*. 2015;41(4):686-694. doi:10.1007/s00134-015-3709-1
- 19. Guirgis FW, Leeuwenburgh C, Moldawer L, et al. Lipid and lipoprotein predictors of functional outcomes and long-term mortality after surgical sepsis. *Ann Intensive Care*. 2021;11(1). doi:10.1186/s13613-021-00865-x
- 20. Haas LEM, Boumendil A, Flaatten H, et al. Frailty is associated with long-term outcome in patients with sepsis who are over 80 years old: Results from an observational study in 241 European ICUs. *Age Ageing*. 2021;50(5):1719-1727. doi:10.1093/ageing/afab036
- 21. Henriksen DP, Pottegard A, Laursen CB, et al. Intermediate-term and long-term mortality among acute medical patients hospitalized with community-acquired sepsis: A population-based study. *Eur J Emerg Med.* 2017;24(6):404-410. doi:10.1097/MEJ.00000000000379
- 22. Honselmann KC, Buthut F, Heuwer B, et al. Long-term mortality and quality of life in intensive care patients treated for pneumonia and/or sepsis. Predictors of mortality and quality of life in patients with sepsis/pneumonia. *J Crit Care*. 2015;30(4):721-726. doi:10.1016/j.jcrc.2015.03.009
- Jia L, Hao L, Li X, Jia R, Zhang HL. Comparing the predictive values of five scales for 4-year allcause mortality in critically ill elderly patients with sepsis. *Ann Palliat Med.* 2021;10(3):2387-2397. doi:10.21037/apm-20-1355
- Jones TK, Fuchs BD, Small DS, et al. Severe Sepsis Is Associated With High Rates Of Hospital Readmission. In: A96. SEPSIS. American Thoracic Society International Conference Abstracts. American Thoracic Society; 2014:A2190-A2190. doi:doi:10.1164/ajrccmconference.2014.189.1_MeetingAbstracts.A2190
- Kaukonen KM, Bailey M, Suzuki S, Pilcher D, Bellomo R. Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000-2012. JAMA. 2014;311(13):1308-1316. doi:10.1001/jama.2014.2637

- 26. Khoury J, Arow M, Elias A, et al. The prognostic value of brain natriuretic peptide (BNP) in noncardiac patients with sepsis, ultra-long follow-up. *J Crit Care*. 2017;42:117-122. doi:10.1016/j.jcrc.2017.07.009
- 27. Kim JS, Kim YJ, Ryoo SM, et al. Risk factors for same pathogen sepsis readmission following hospitalization for septic shock. *J Clin Med*. 2019;8:181. doi:10.3390/jcm8020181
- Laupland KB, Zygun DA, Doig CJ, Bagshaw SM, Svenson LW, Fick GH. One-year mortality of bloodstream infection-associated sepsis and septic shock among patients presenting to a regional critical care system. *Intensive Care Med.* 2005;31(2):213-219. doi:10.1007/s00134-004-2544-6
- 29. Lee CC, Chen SY, Tsai CL, et al. Prognostic value of mortality in emergency department sepsis score, procalcitonin, and C-reactive protein in patients with sepsis at the emergency department. *Shock*. 2008;29(3):322-327. doi:10.1097/SHK.0b013e31815077ca
- Li WS, Chen ZZ, Zheng YJ, et al. The efficacy of parenteral fish oil in critical illness patients with sepsis: A prospective, non-randomized, observational study. *Asia Pac J Clin Nutr.* 2018;27(2):306-312. doi:10.6133/apjcn.032017.07
- 31. Lichtenauer M, Wernly B, Ohnewein B, et al. The lactate/albumin ratio: A valuable tool for risk stratification in septic patients admitted to ICU. *Int J Mol Sci.* 2017;18(1893). doi:10.3390/ijms18091893
- Linder A, Guh D, Boyd JH, Walley KR, Anis AH, Russell JA. Long-term (10-year) mortality of younger previously healthy patients with severe sepsis/septic shock is worse than that of patients with nonseptic critical illness and of the general population. *Crit Care Med*. 2014;42(10):2211-2218. doi:10.1097/CCM.000000000000503
- 33. Liu A, Yo CH, Nie L, et al. Comparing mortality between positive and negative blood culture results: an inverse probability of treatment weighting analysis of a multicenter cohort. *BMC Infect Dis.* 2021;21(182). doi:10.1186/s12879-021-05862-w
- 34. Liu V, Lei X, Prescott HC, Kipnis P, Iwashyna TJ, Escobar GJ. Hospital readmission and healthcare utilization following sepsis in community settings. *J Hosp Med.* 2014;9(8):502-507. doi:10.1002/jhm.2197
- 35. Marcia Contrin Av Brigadeiro Faria Lima L, Manoel S, Marcia Contrin L, et al. Quality of Life of Severe Sepsis Survivors After Hospital Discharge 1. *Rev Lat-Am Enferm*. 2013;21(3):795-802. www.eerp.usp.br/rlaewww.eerp.usp.br/rlae
- 36. Meurer WJ, Losman ED, Smith BL, Malani PN, Younger JG. Short-term functional decline of older adults admitted for suspected sepsis. *Am J Emerg Med*. 2011;29(8):936-942. doi:10.1016/j.ajem.2010.04.003
- Nesseler N, Defontaine A, Launey Y, Morcet J, Mallédant Y, Seguin P. Long-term mortality and quality of life after septic shock: A follow-up observational study. *Intensive Care Med*. 2013;39(5):881-888. doi:10.1007/s00134-013-2815-1
- 38. Norman BC, Cooke CR, Wes Ely E, Graves JA. Sepsis-Associated 30-Day Risk-Standardized Readmissions: Analysis of a Nationwide Medicare Sample. *Crit Care Med.* 2017;45(7):1130-1137. doi:10.1097/CCM.0000000002476

- Ou SM, Chu H, Chao PW, et al. Long-term mortality and major adverse cardiovascular events in sepsis survivors a nationwide population-based study. *Am J Respir Crit Care Med*. 2016;194(2):209-217. doi:10.1164/rccm.201510-2023OC
- 40. Perner A, Haase N, Winkel P, et al. Long-term outcomes in patients with severe sepsis randomised to resuscitation with hydroxyethyl starch 130/0.42 or Ringer's acetate. *Intensive Care Med.* 2014;40(7):927-934. doi:10.1007/s00134-014-3311-y
- 41. Prescott HC. Variation in postsepsis readmission patterns: A cohort study of veterans affairs beneficiaries. *Ann Am Thorac Soc.* 2017;14(2):230-237. doi:10.1513/AnnalsATS.201605-398OC
- 42. Prescott HC, Langa KM, Iwashyna TJ. Forty Percent of Hospitalizations After Severe Sepsis are Potentially Preventable. In: *D106. RAISING THE BAR ON OUTCOMES IN CRITICAL ILLNESS.* American Thoracic Society International Conference Abstracts. American Thoracic Society; 2015:A6237-A6237. doi:doi:10.1164/ajrccm-conference.2015.191.1_MeetingAbstracts.A6237
- 43. Prescott HC, Langa KM, Iwashyna TJ. Readmission diagnoses after hospitalization for severe sepsis and other acute medical conditions. *JAMA*. 2015;313(10):1055-1057. doi:10.1001/jama.2015.1410
- 44. Prescott HC, Osterholzer JJ, Langa KM, Angus DC, Iwashyna TJ. Late mortality after sepsis: Propensity matched cohort study. *BMJ*. 2016;353:i2375. doi:10.1136/bmj.i2375
- 45. Quartin AA, H Schein RM, Kett DH, et al. Magnitude and Duration of the Effect of Sepsis on Survival. *JAMA*. 1997;277(13):1058-1063. https://jamanetwork.com/
- 46. Rahmel T, Schmitz S, Nowak H, et al. Long-term mortality and outcome in hospital survivors of septic shock, sepsis, and severe infections: The importance of aftercare. *PLoS one*. 2020;15(2):e0228952. doi:10.1371/journal.pone.0228952
- 47. Ranzani OT, Zampieri FG, Forte DN, Azevedo LCP, Park M. C-Reactive Protein/Albumin Ratio Predicts 90-Day Mortality of Septic Patients. *PLoS one*. 2013;8(3). doi:10.1371/journal.pone.0059321
- 48. Rice D, Simpson K, Goodwin A, Ford D. Patterns of Hospital Readmission Following an Index Hospitalization for Sepsis. *Chest.* 2013;144(4):400A. doi:10.1378/chest.1699902
- 49. Rygård SL, Holst LB, Wetterslev J, et al. Long-term outcomes in patients with septic shock transfused at a lower versus a higher haemoglobin threshold: the TRISS randomised, multicentre clinical trial. *Intensive Care Med.* 2016;42:1685-1694. doi:10.1007/s00134-016-4437-x
- 50. Sasse KC, Md M;, Nauenberg E, et al. Long-term survival after intensive care unit admission with sepsis. *Clinical Investigation Critical Care Medicine Issue*. 1995;23(6):1040-1047.
- 51. Scheer CS, Fuchs C, Kuhn SO, et al. Quality improvement initiative for severe sepsis and septic shock reduces 90-day mortality: A 7.5-year observational study. *Crit Care Med.* 2017;45(2):241-252. doi:10.1097/CCM.00000000002069

- 52. Schmidt K, Gensichen J, Fleischmann-Struzek C, et al. Long-term survival following sepsis results of a single-center registry study with four year follow-up. *Dtsch Arztebl Int.* 2020;117(46):775-782. doi:10.3238/arztebl.2020.0775
- 53. Singh A, Bhagat M, George S v, Gorthi R, Chaturvedula C. Factors Associated with 30-day Unplanned Readmissions of Sepsis Patients: A Retrospective Analysis of Patients Admitted with Sepsis at a Community Hospital. *Cureus*. 2019;11(7). doi:10.7759/cureus.5118
- 54. Stenholt POO, Abdullah SMO bin, Sørensen RH, Nielsen FE. Independent predictors for 90-day readmission of emergency department patients admitted with sepsis: a prospective cohort study. *BMC Infect Dis.* 2021;21(315). doi:10.1186/s12879-021-06007-9
- 55. Stiermaier T, Herkner H, Tobudic S, et al. Incidence and long-term outcome of sepsis on general wards and in an ICU at the General Hospital of Vienna: An observational cohort study. *Wien Klin Wochenschr.* 2013;125:302-308. doi:10.1007/s00508-013-0351-1
- 56. Storgaard M, Hallas J, Gahrn-Hansen B, Pedersen SS, Pedersen C, Lassen AT. Short-and long-term mortality in patients with community-acquired severe sepsis and septic shock. *Scand J Infect Dis.* 2013;45(8):577-583. doi:10.3109/00365548.2013.786836
- 57. Styrvoky K, Weinreich M, Girod C, Ruggiero R. Beyond Surviving Sepsis: Thirty-Day Readmission Rates and Patient Characteristics at a Safety Net Hospital. *Chest.* 2015;148(4):336A. doi:10.1378/chest.2268558
- Styrvoky K, Weinreich M, Girod CE, Ruggiero RM. Risk Factors for Thirty-Day Readmissions Among Sepsis Survivors at a Safety Net Hospital. In: *B47. CRITICAL CARE: CLINICAL RESEARCH DISCOVERIES, EPIDEMIOLOGY, AND HEALTH SERVICES FOR SEPSIS.* American Thoracic Society International Conference Abstracts. American Thoracic Society; 2016:A3676-A3676. doi:doi:10.1164/ajrccm-conference.2016.193.1_MeetingAbstracts.A3676
- 59. Tacke F, Nuraldeen R, Koch A, et al. Iron parameters determine the prognosis of critically ill patients. *Crit Care Med*. 2016;44(6):1049-1058. doi:10.1097/CCM.00000000001607
- 60. Tacke F, Roderburg C, Benz F, et al. Levels of circulating mir-133a are elevated in sepsis and predict mortality in critically ill patients. *Crit Care Med.* 2014;42(5):1096-1104. doi:10.1097/CCM.0000000000131
- 61. Taylor SP, Chou SH, Sierra MF, et al. Association between adherence to recommended care and outcomes for adult survivors of sepsis. *Ann Am Thorac Soc.* 2020;17(1):89-97. doi:10.1513/AnnalsATS.201907-514OC
- 62. Tsaganos T, Raftogiannis M, Pratikaki M, et al. Clarithromycin leads to long-term survival and cost benefit in ventilator-associated pneumonia and sepsis. *Antimicrob Agents Chemother*. 2016;60(6):3640-3646. doi:10.1128/AAC.02974-15
- Tsen R, Seoane L, Li D, Pavlov A, Winterbottom F, Nash T. Frequency and Timing of Readmissions Among Survivors of Severe Sepsis and Septic Shock. In: *D106. RAISING THE BAR ON OUTCOMES IN CRITICAL ILLNESS.* American Thoracic Society International Conference Abstracts. American Thoracic Society; 2015:A6240-A6240. doi:doi:10.1164/ajrccmconference.2015.191.1_MeetingAbstracts.A6240

- 64. Vashi AA, Fox JP, Carr BG, et al. Use of hospital-based acute care among patients recently discharged from the hospital. *JAMA*. 2013;309(4):364-371. doi:10.1001/jama.2012.216219
- 65. Vasile VC, Chai HS, Abdeldayem D, Afessa B, Jaffe AS. Elevated cardiac troponin T levels in critically ill patients with sepsis. *Am J Med.* 2013;126(12):1114-1121. doi:10.1016/j.amjmed.2013.06.029
- 66. Wang HE, Szychowski JM, Griffin R, Safford MM, Shapiro NI, Howard G. Long-term mortality after communityacquired sepsis: A longitudinal population-based cohort study. *BMJ Open*. 2014;4. doi:10.1136/bmjopen-2013-004283
- Weinreich MA, Styrvoky K, Chang S, Girod CE, Ruggiero R. Sepsis at a Safety Net Hospital: Risk Factors Associated With 30-Day Readmission. *J Intensive Care Med.* 2019;34(11-12):1017-1022. doi:10.1177/0885066617726753
- Weycker D, Akhras KS, Edelsberg J, Angus DC, Oster G. Long-term mortality and medical care charges in patients with severe sepsis. *Crit Care Med*. 2003;31(9):2316-2323. doi:10.1097/01.CCM.0000085178.80226.0B
- 69. Whiles B, Deis A, Miller P, Simpson S. Comorbid Conditions Predict Outcomes in Patients With Severe Sepsis. *Chest.* 2016;149(4):A170. doi:10.1016/j.chest.2016.02.176
- Yende S, Kellum JA, Talisa VB, et al. Long-term Host Immune Response Trajectories among Hospitalized Patients with Sepsis. *JAMA Netw Open*. 2019;2(8). doi:10.1001/jamanetworkopen.2019.8686
- 71. Yende S, Linde-Zwirble W, Mayr F, Weissfeld LA, Reis S, Angus DC. Risk of cardiovascular events in survivors of severe sepsis. *Am J Respir Crit Care Med*. 2014;189(9):1065-1074. doi:10.1164/rccm.201307-1321OC
- 72. Zhao P yue, Yao R qi, Ren C, et al. De Ritis Ratio as a Significant Prognostic Factor in Patients with Sepsis: A Retrospective Analysis. *J Surg Res.* 2021;264:375-385. doi:10.1016/j.jss.2021.03.018
- 73. Zilberberg MD, Shorr AF, Micek ST, Kollef MH. Risk factors for 30-day readmission among patients with culture-positive severe sepsis and septic shock: A retrospective cohort study. *J Hosp Med*. 2015;10(10):678-685. doi:10.1002/jhm.2420

PROTOCOL FOR SYSTEMATIC REVIEW OF THE ASSESSMENT OF SOCIAL DETERMINANTS OF HEALTH IN STUDIES OF POST-SEPSIS OUTCOMES

Rationale

Sepsis, life-threatening organ dysfunction caused by a dysregulated host response to infection, is responsible for significant acute and chronic morbidity and mortality.^{refs} Two commonly studied adverse outcomes for sepsis survivors are i) rehospitalization and of ii) long-term mortality. Systematic reviews have reported a mean 1-year rehospitalization rate of 39.0% (95% CI, 22.0%-59.4%) and a mean 1-year mortality rate of 16.1% (95% CI, 14.1%-18.1%) among adult sepsis survivors. A systematic review of rehospitalization risk factors (predictors) for sepsis survivors that included 56 studies highlighted characteristics that were predictors of increased risk of readmission across studies, categorized as generic, sepsis-specific, and hospital-level factors.

Despite the increased attention to recovery after sepsis, an important topic that remains unknown is the association of social determinants of health (SDH) with adverse outcomes. The clinical significance of SDH has been demonstrated in numerous other settings, and SDH may be a particularly salient contributor to the risk of hospital readmission. Indeed, a number of studies have demonstrated the relationship between SDH and hospital readmission. We found no systematic reviews to date that explore the relationship between SDH and risk for rehospitalization or mortality after sepsis in adults. Understanding the social determinants that impact adverse outcomes after sepsis is important to inform interventions that adequately address the whole-person needs of sepsis survivors.

Purpose and objectives

The proposed review aims to summarize knowledge and identify gaps in evidence about the relationship between social determinants and post-sepsis outcomes.

Research question

Is there evidence to support the association between social determinants of health and mortality or rehospitalization after sepsis in adults?

Methods

This study will conform to the PRISMA guidelines for systematic reviews, and is registered with the International prospective register of systematic reviews (PROSPERO CRD pending).

Inclusion criteria

We will search for both randomized clinical trials (RCTs) and observational studies published since 1992 in the following databases: MEDLINE (including in-process and non-indexed citations), Cochrane Library and its associated databases (including Database of Abstracts of Reviews of Effects (DARE), Web of Science, and EMBASE. The search strategy will use controlled vocabulary terms and text words for sepsis and post-sepsis mortality or hospital readmission, and the search set will be limited to humans and English language. Subject headings will be exploded and mapped to the appropriate controlled vocabulary terms. The year 1992 was chosen to coincide with the year of publication of the first consensus sepsis definitions. The full electronic search strategy for MEDLINE is presented in Appendix 1 and modified for other databases. The initial literature search was on XX and was updated on YY.

Study Selection

Two reviewers will independently screen citations for those reporting either of the primary outcomes after index sepsis discharge i) all-cause mortality or ii) hospital readmission in the title or abstract. The full text of any citation considered potentially relevant by either reviewer will be retrieved. Eligible studies have a cohort, case–control, or Randomized-Controlled Trial (RCT) design; enrolled hospital survivors of an admission for sepsis; and reported all-cause

readmission or late mortality as a primary outcome. For inclusion into the review, sepsis was defined as infection-related organ dysfunction managed in hospital setting and includes studies that used the equivalent terminology of sepsis, severe sepsis, and septic shock. We will exclude studies restricted to children and to special populations such as those with HIV, cancer, and other immunocompromised states. We will also exclude studies enrolling survivors of uncomplicated infections, such as pneumonia, without referring to organ dysfunction or to International Classification of Diseases (ICD) codes for sepsis, severe sepsis, or septic shock in their index sepsis case definitions. We will screen reference lists of included studies, related review articles, and editorials.

Data collection and validity assessment

When two or more studies are identified that reported data from the same patient cohort, the most relevant article will be identified as the most recent full manuscript. Three authors will extract data from the included studies and issues of uncertainty will be resolved by consensus. We will include full manuscripts and conference abstracts for assessing the count of studies assessing social determinants but only the full manuscripts for assessing social determinants as independent risk factors. From each of the included studies, we will extract data on study design, number of patients, duration of follow-up, description of index sepsis admission, rehospitalization events, mortality events, and social determinants assessed as independent risk factors for rehospitalization (see Data Abstraction form, Appendix 2).

Assessment of methodological quality

For studies reported as full-text manuscripts, study quality will be assessed using domains from the modified Newcastle Ottawa Score (NOS) checklist. These include patient selection (cohort data source for representativeness of exposed cohort, selection of nonexposed cohort, exposure ascertainment using sepsis definitions or International Classification of Diseases codes), minimum duration of follow-up for outcome to occur of 30 days, assessment of confounding (use of comparator populations, matching, restriction, stratification, and regression), and outcome (outcome assessment, length, and adequacy of follow-up). The SDH reported as independent risk factors for mortality and rehospitalization will be identified from studies that used regression models to account for confounders.

Ethics and Dissemination

Approval from a research ethics board will not be required for this review. Once completed, the review will be submitted for publication in a peer-reviewed journal, and findings will be presented in local and national forums.

Data analysis

The co-primary outcomes are all-cause rehospitalization and all-cause mortality occurring after index hospitalization among sepsis survivors, at follow-up time points as reported in studies. We will provide a descriptive comparison of social determinants included among studies, the methodological quality of SDH data, and those social determinants identified as increasing the risk of rehospitalization or mortality in sepsis survivors between studies.

Discussion

This review will be the first review to focus on social determinants of health in the context of post-sepsis adverse outcomes. Most current research focuses on biologic or illness-related risk factors for adverse outcomes after sepsis. Such risk factors include age, gender, comorbidities, and severity of illness. Although understanding biologic risk factors is important to addressing post-sepsis outcomes, social factors have been implicated in the progression and development of many health conditions and are likely important contributors to post-sepsis outcomes as well. The discovery of which social determinants affect recovery after sepsis is pivotal to advancing knowledge to further guide support and management approaches in this vulnerable population.

Table 1 Description of studio	s assessing SDH and post-sepsis outcomes
Table 1. Description of studies	S ASSESSING SULLAND DOST-SEDSIS OUTCOMES

Stud y ID (Aut hor, year)	Cohort data source (single/ multi center, n =)	Cohort descrip tion	Follow- up method and outc ome assess ment	Social determi nants included	Social determi nant assess ment method (HER, survey, census)	Social determin ant level (individua l or neighbor hood)	Missing data on social determi nants (low, high)	Confou nder assess ment	Non- sepsis compari sons

Table 2. Summary of full manuscripts included in the review and SDOH associated with increased risk of rehospitalization or mortality in studies reporting regression models

Study ID	Study characteristics (Data source and sample size)	Regression model for the outcome	SDOH with independent association with rehospitalization	SDOH with independent association with mortality

Appendix

Search strategy

(("sepsis"[MeSH Terms] OR "shock, septic"[MeSH Terms] OR "sepsis"[Text Word] OR "severe sepsis"[Text Word] OR "sepsis syndrome*"[Text Word] OR "septic*"[Text Word]) AND (1992/01/01:2021/05/01[Date - Publication] AND "english"[Language]) AND ((("patient readmission"[MeSH Terms] OR "patient readmission"[MeSH Terms] OR "readmission*"[Text Word] OR "rehospitalization*"[Text Word] OR "rehospitalisation*"[Text Word]) AND (1992/01/01:2021/05/01[Date - Publication] AND "english"[Language])) OR (("late mortality"[Text Word] OR "long-term mortality"[Text Word] OR ("post-discharge"[Text Word] OR "after discharge"[Text Word])) AND (1992/01/01:2021/05/01[Date - Publication] AND "english"[Language])))) AND ((1992/1/1:2021/5/1[pdat]) AND (english[Filter])