
Supplementary Table 1.  Descriptive characteristics of the Medicare cohort, by stroke status. 

 

Characteristic1 No Stroke Hemorrhagic Stroke P Value2 Ischemic Stroke P Value3 

No. of persons 254,937 (96.0) 1802 (0.7)  ─ 8946 (3.4) ─ 
Age, yr 64.6 ± 15.2 62.2 ± 14.5 <0.001 68.8 ± 12.2 <0.001 
Male 136,046 (53.4) 904 (50.2) 0.007 3649 (40.8) <0.001 
Race/Ethnicity   <0.001  <0.001 
   African-Amer. 76,037 (29.8) 683 (37.9)  2973 (33.2)  
   Caucasian 140,295 (55.0) 715 (39.7)  4758 (53.2)  
   Hispanic 26,551 (10.4) 287 (15.9)  900 (10.1)  
   Other 12,054 (4.7) 117 (6.5)  315 (3.5)  
BMI category   <0.001  0.036 
   <20 kg/m2 24,598 (9.7) 242 (13.4)  870 (9.7)  
   20-24.9 kg/m2 80,613 (31.6) 650 (36.1)  2891 (32.3)  
   25-29.9 kg/m2 72,923 (28.6) 508 (28.2)  2612 (29.2)  
   ≥30 kg/m2 76,803 (30.1) 402 (22.3)  2573 (28.8)  
Smoker 14,335 (5.6) 118 (6.6) 0.090 440 (4.9) 0.004 
Substance abuser 5530 (2.2) 90 (5.0) <0.001 110 (1.23) <0.001 
Unemployed 242,245 (95.0) 1743 (96.7) <0.001 8761 (97.9) <0.001 
Unable to ambulate  10,986 (4.3) 52 (2.9) 0.003 405 (4.5) 0.32 
Unable to transfer 3921 (1.5) 10 (0.6) <0.001 144 (1.6) 0.59 
In-center HD4 237,545 (93.2) 1723 (95.6) <0.001 8316 (93.0) 0.42 
Hb  < 11.0 g/dL 169,312 (72.8) 1305 (78.7) <0.001 6047 (74.6) <0.001 
Comorbidities      
   HTN 214,792 (84.3) 1573 (87.3) <0.001 7794 (87.1) <0.001 
   DM 134,561 (52.8) 992 (55.1) 0.055 5514 (61.6) <0.001 



   CHF 84,244 (33.1) 537 (29.8) 0.004 3345 (38.5) <0.001 
   CAD 71,447 (28.0) 396 (22.0) <0.001 2891 (32.3) <0.001 
   PVD 38,852 (15.2) 222 (12.3) <0.001 1588 (17.8) <0.001 
   Prior CVA 25,893 (10.2) 235 (13.0) <0.001 1419 (15.9) <0.001 
   Permanent AF 36,345 (14.3) 219 (12.2) 0.011 2055 (23.0) <0.001 
Comorbidity Score5 5.0 ± 2.8 4.8 ± 2.6 <0.001 5.6 ± 2.7 <0.001 
Cause of ESRD   <0.001  <0.001 
   DM 119,334 (46.8) 921 (51.1)  4965 (55.5)  
   HTN 67,290 (26.4) 504 (28.0)  2323 (26.0)  
   GN 22,233 (8.7) 132 (7.3)  452 (5.1)  
   Other 46,080 (18.1) 245 (13.6)  1206 (13.5)  
 

1Characteristics shown as n (%), except for continuous variables, which are shown as mean ± 1 standard deviation. 
 
2Compares individuals with hemorrhagic stroke to those with no stroke. 
 
3Compares individuals with ischemic stroke to those with no stroke. 
 
4In-center HD is contrasted to self-care dialysis, which consists of home HD plus peritoneal dialysis. 
 
5Comorbidity score is derived from an adapted form of the Liu Comorbidity Index. 
 
Abbreviations: African-Amer., African-American; BMI, body mass index; HD, hemodialysis; Hb, hemoglobin; HTN, hypertension; 
DM, diabetes mellitus; CHF, congestive heart failure; CAD, coronary artery disease; PVD, peripheral vascular disease; CVA,  
cerebrovascular event; AF, atrial fibrillation; ESRD, end stage renal disease; GN, glomerulonephritis 
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Supplemental Material 

 

Appendix 1: Data sources and covariates 

 

Details on data sources and linking strategy 

We performed a retrospective cohort analysis of incident, Medicare and Medicaid 

(“dually eligible”) chronic dialysis patients.  Medicare is a federally-funded program for which 

nearly all adults with end stage renal disease are entitled, regardless of age; while not all 

individuals receiving chronic dialysis are Medicare enrollees, the vast majority is (1, 2). 

Data for these analyses were assembled from two primary sources.  First, we utilized the 

USRDS, a national system that collects data on virtually all patients undergoing chronic dialysis 

in the U.S.  From the USRDS, we received standard patient records that included demographics, 

comorbidites, functional status, and dialysis modality (from the Medical Evidence Form, known 

as “CMS 2728”) at the time of dialysis commencement.  The USRDS also incorporates data on 

inpatient and outpatient medical claims paid by Medicare, which provides insurance coverage for 

the vast majority of dialysis patients.  The Medicare claims files contain International 

Classification of Diseases – 9th Revision (ICD-9) codes for each date of service.   

To make possible the study of dually-eligible individuals, the USRDS performed a 

deterministic match of these Medicaid beneficiaries against the core USRDS files to identify 

dually-eligible individuals on chronic dialysis.  This permitted us to link USRDS data with 

Centers for Medicare & Medicaid Services (CMS) Medicaid prescription drug billing claims, in 

the form of the Medicaid Analytic eXtract Personal Summary Files and the final action 

prescription drug claims files.  Medicaid files were used to determine prescription records for 
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methimazole or propothiouracil, which were elements used in our algorithms to identify 

nontransient, nonvalvular atrial fibrillation, as described below.  These sources were linked using 

previously-described methodology to permit identification of dually-eligible dialysis patients in 

2000-05.   

 

Details on covariates and descriptive variables 

Demographic and clinical variables, drawn from the CMS 2728 dialysis intake form, 

included age, sex, race by ethnicity, body mass index, employment status, smoking, substance 

abuse (alcohol or illicit drugs), ability to ambulate and to transfer, cause of ESRD, and dialysis 

modality.  Comorbidities consisted of diabetes, congestive heart failure, coronary artery disease, 

cerebrovascular disease, and peripheral vascular disease.  Ethnicity was categorized into one of 

four mutually-exclusive groups: non-Hispanic Caucasians, non-Hispanic African-Americans, 

Hispanics, and Others.  Body mass index (BMI) was classified into 4 categories: < 20 kg/ m2, 

20-24.99 kg/m2, 25-29.99 kg/m2, ≥ 30 kg/m2.  Cause of ESRD was categorized as diabetes, 

hypertension, glomerulonephritis, or other.   Because the CMS 2728 form is structured such that 

diabetes and hypertension may be considered as both a cause of ESRD and/or a “freestanding” 

comorbidity, for the purposes of the present analysis, these two covariates were considered a 

comorbidity if they were listed as either the cause of ESRD or as a “freestanding” comorbidity 

on the CMS 2728 form (3, 4).  Dialysis modality at time of dialysis initiation was categorized as 

in-center hemodialysis or self-care dialysis (home hemodialysis or peritoneal dialysis).  We used 

a modified form (5) of the Liu Comorbidity Index (6).  This index is a summary measure of 

disease burden which also includes cause of ESRD; therefore, cause of ESRD was not modeled 

separately.  However, our form of this index used only 90 (rather than 180) days in which to 
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acquire claims since we have previously found little difference in indices generated using 90 or 

180 days of claims data (5) and because we had required that patients have Medicaid and 

Medicare coverage throughout the first 90 days. 

 

Details on the determination of permanent atrial fibrillation 

The ICD-9 code 427.31 was used to identify AF claims using a well-established 

algorithm designed to determine the presence of nontransient, nonvalvular AF (4, 7).  Individuals 

who had hyperthyroidism or thyrotoxicosis were eliminated, based on the presence of relevant 

ICD-9 and/or CPT (Common Procedural Technology) and/or HCPCS (Healthcare Common 

Procedure Coding System) codes, or by a prescription at any time for methimazole or 

propothiouracil.  We next eliminated patients with evidence of valvular heart disease (using ICD-

9 codes).  Finally, to minimize potential misclassification from perioperative sources of AF (e.g., 

coronary artery bypass surgery), claims (rather than individuals) were eliminated unless there 

was a preexisting (> 30 d) AF claim.  This resulted in the elimination of individuals in whom AF 

claims were only proximally related to cardiac surgery, but allowed inclusion of individuals in 

whom there was evidence of preexisting AF.   To classify individuals as having permanent AF, 

we initially required a total of 2 (or more) AF claims, separated by 30 days, of which no more 

than 1 was an inpatient claim.  Additionally, we expunged all outpatient AF claims within 7 days 

of a subsequent AF claim-containing admission and within 30 days after an AF claim-containing 

admission, retaining only the original inpatient claim.   

 

Details on the determination of stroke events 
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A specific approach, in which only the codes with higher specificities for ischemic or 

hemorrhagic strokes were used, was the primary approach.   For purposes of sensitivity analyses, 

we also created more inclusive approaches that allowed for a broader range of ischemic and 

hemorrhagic stroke codes.  For identifying ischemic strokes, we used the strategy of Go et al (8, 

9).  The patient was considered to have an ischemic stroke if the principal diagnosis ICD-9 code 

at the time of hospital discharge was 434 or 436 and one of the following occurred: (a) the 

patient expired during the hospitalization; (b) the hospitalization lasted ≥ 48 hours; or (c) the 

hospitalization lasted < 48 hours and the patient did not have a carotid endarterectomy (ICD-9 

code 381.2).  In the absence of 434 or 436, ICD-9 code 362.3 was sufficient to diagnose an 

ischemic stroke.  The sensitive approach differed only by treating code 433 analogously to 434 

and 436.  

For hemorrhagic strokes, a specific approach, using codes with higher specificity for 

hemorrhagic stroke, comprised the primary analysis.   As above, codes were hospital discharge 

codes residing in the first position.  A sensitivity analysis, in which codes with greater sensitivity 

for hemorrhagic stroke were used, was also performed.  The primary (specific) approach utilized 

codes 430 and 431, while the more sensitive approach added codes 432, 852.0, 852.2, 852.4, and 

853. 
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Appendix 2: Detailed Statistical Methods of the Survival Model 

 

Assessment of dialysis time on survival following stroke 

  We initiated our analysis of time to death by any cause by plotting separate Kaplan Meier 

(KM) curves among the subset of individuals who experienced a hemorrhagic stroke, and again 

for the subset who experienced an ischemic stroke.  The start time (“time zero”) for these 

analyses were the date the stroke occurred, thus survival time was time from stroke until death 

from any cause.  For each stroke type subgroup (hemorrhagic or ischemic), subjects were 

stratified by their time on dialysis prior to the stroke occurrence.  The log-rank test for the 

hemorrhagic stroke subgroup did not find evidence of a significant effect of time on dialysis on 

survival from the stroke until death from any cause (p = 0.53).  Similarly for the ischemic stroke 

subgroup, time on dialysis did not affect survival following stroke (p = 0.40).  Visual inspection 

of the corresponding KM curves of survival time from stroke occurrence through death from any 

cause was consistent with these log-rank test results, indicating that the survival experience 

following either type of stroke event was not significantly altered by how long a subject had been 

on dialysis before the stroke occurred.  

 

Survival function when strokes do not occur 

 For subjects that did not experience a stroke during the observation window or, for those 

that did, for their pre-stroke time (i.e., from time of cohort entry [dialysis plus 90 days] through 

death or the end of their follow-up time), initial modeling of survival times was obtained using a 

Cox proportional hazards (PH) model.  For this analysis, the start time (“time zero”) was cohort 

entry (date of dialysis initiation plus 90 days) and the outcome of interest was death from any 
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cause.  Our Cox model of this outcome allowed us to identify risk factors associated with 

mortality.  These risk factors included baseline demographic and clinical measures, as well as 

atrial fibrillation, which was developed as a time-dependent covariate following the algorithm 

described in Appendix 1.  The baseline clinical measures included the occurrence of a stroke 

prior to cohort entry, but the impact of a stroke event on all-cause mortality that occurred during 

follow-up was addressed in a different manner, as described below.  The validity of the PH 

assumptions for this model were ascertained using log-log survival plots for the categorical 

predictors and plots of Schoenfeld residuals versus time for the continuous variables. 

 Next, to be able to estimate years of life lost due to stroke after adjusting for the effect of 

all risk factors, we needed to identify a fully parametric form of the survival model.  We first did 

this by fitting a baseline hazard function to our semi-parametric Cox PH model, and then 

incorporating the impact of a hemorrhagic or ischemic stroke event using an additive hazard 

extension, which is described in detail below.  We generated the KM survival curve of 

individuals who did not have a stroke (or, for those who had a stroke, their pre-stroke time) to 

use for validation of the fully parametric models we selected (i.e., for the observed vs. expected 

plot comparisons).  Of the various candidate parametric distributions (e.g., exponential, Weibull, 

lognormal, loglogistic and gamma) that were considered for assessing the model fit of this 

baseline survival function, a Weibull distribution with a shape parameter of 0.91 and scale 

parameter of 80.21 was found to be the best candidate based on Akaike’s information criterion 

(AIC = 133727.8).  Exploiting the fact that a Weibull distribution can also be expressed by 

means of a PH model, this baseline survival function was then adjusted to account for the effect 

of other risk factors − for categorical variables, this represented the proportion of subjects with 

the various characteristics − using the mean value for each explanatory variable to provide a 
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population-wide risk adjusted survival curve (i.e., the expected curve) for comparison to the KM 

curve (i.e., the observed curve) mentioned above to facilitate model assessment by visual 

inspection of the observed vs. expected plots. 

 

Modeling changes to the survival function as a result of stroke 

Since ischemic and hemorrhagic strokes are two very different life-changing events, it is 

reasonable to assume that the survival function will change very differently − even in a manner 

that is no longer proportional in terms of hazards − upon incidence of one of the two types of 

strokes.  As the overall aim was to be able to quantify residual longevity between those who 

experienced a stroke compared to those who did not, it was required to model changes in hazard 

of death upon the occurrence of each type of stroke to facilitate this comparison.  To this end, we 

used a semi-Markov model with additive hazard extension, which enabled us to utilize the fully 

parametric model of survival from cohort entry to death described above, and also to incorporate 

the dramatic changes in the survival functions due to the occurrence of a stroke while on dialysis 

using additive hazard extensions. 

As a brief explanation, a semi-Markov model assumes that the mortality experience of 

patients at any given time t after their entry into cohort (dialysis initiation plus 90 days) is 

affected by a single transitive stroke event in two ways: by the occurrence of stroke, and, by the 

time since the stroke occurred.  As suggested by the KM curves (above), the amount of time on 

dialysis before stroke occurs does not influence this mortality experience following the stroke, so 

that layer of complexity beyond the semi-Markov assumption is not required.  The additive 

hazard extension allows us the flexibility to model incremental hazard of death for those 

experiencing stroke in addition to the hazard influences of risk factors other than strokes. 
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Notably, both semi-Markov models (10) and additive hazards models have been used in clinical 

and biostatistical research (11).  More information about semi-Markov models with an 

application on bone marrow transplant study is available (12).  

To model survival time from a stroke event (designated as “time zero”) to death from any 

cause, we selected from candidate parametric models.  This was done to facilitate our aim to 

estimate years of life lost due to stroke after adjusting for the effect of all mortality risk factors: a 

subject’s survival would follow that of the Weibull model initially, and in the event the subject 

then experienced a stroke, his or her remaining survival time (until death from any cause) would 

subsequently follow the survival function identified here.  Of the various candidate parametric 

distributions that we considered (such as exponential, Weibull, lognormal, gamma, loglogistic), 

the generalized gamma distribution for individuals who experienced a hemorrhagic stroke (shape 

parameter = -2.281, scale parameter = 1.258, AIC = 1907.07) and the lognormal distribution for 

individuals who experienced an ischemic stroke (scale parameter = 1.883; AIC = 7411.36) were 

found to provide the best fit based on their AIC values.  Additionally, we also performed visual 

inspection of the observed (KM) vs. expected plots for time since stroke (“time zero” for these 

models) until death from any cause to further validate our selected models.  It should be noted 

here that the choice of generalized gamma distribution is a very flexible option that includes both 

Weibull (shape parameter = 1) and lognormal distributions (shape parameter = ∞) as special 

cases, and can be used to model a variety of hazard shapes (both increasing and decreasing) that 

cannot be modeled by some popular parametric distributions (13).  Additionally, a complete 

taxonomy of hazard functions related to the generalized gamma distribution has been described 

(14). 
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Estimates of median residual lifetime 

Using this flexible modeling approach we were able to obtain, at any given survival time 

on dialysis t, say, and time spent on stroke , say, (where  , so  represents the time 

on dialysis that the stroke occurred), the following estimates were calculated: 

1. median residual lifetime on dialysis absent a stroke, calculated as the number of months  

for the survival function for no stroke to drop in half from a given point of reference (say, 

, so the point on the time axis where the height of the survival curve drops to 

 ; 

2. median residual lifetime on dialysis following a stroke event, calculated as above except 

with the survival function now following a different path (due to the additive hazard) to 

find the point where the height of the survival curve drops to , noting that the 

curves for hemorrhagic stroke are different than those for ischemic; and 

3. median residual life lost due to stroke (hemorrhagic and ischemic) was found by 

subtracting (2) from (1) above. 

 

Resulting survival model and further diagnostics 

 Overall, this framework allowed us to study risk accentuation in this dialysis cohort, and 

in particular the heavy influence of ischemic and hemorrhagic stroke events on estimates of 

remaining survival time.  This also facilitated the creation of survival curves to demonstrate 

these influences of stroke.  These curves included adjustment for effects of other modeled risk 

factors. 

 As a diagnostic check for our modeling approach, we compared the model-predicted 

survival profile (adjusted for all risk factors as described above) for patients who experienced a 
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stroke near the point of cohort entry (as stated above, defined as dialysis initiation plus 90 days) 

with the unadjusted KM curve for subjects that experienced strokes using survival time after 

stroke as the time axis for the KM curve (i.e., stroke occurrence as “time zero” for this diagnostic 

check) and found agreement (that is, no lack-of-fit).  We were also able to estimate the relative 

hazard for those who had strokes compared to those that did not as a function of time after 

stroke.  This varied based on how long the subject had been on dialysis before the stroke 

occurred due to the fact that the Weibull hazard of non- or pre-stroke (reference group) subjects 

was found to be a decreasing function of time.  Thus, this non-constant hazard ratio is influenced 

by stroke “vintage”, though maintaining the same overall trend over time.  Finally, using our 

approach we were able to quantify a sample-based average estimate of median residual months 

of life lost due to stroke while simultaneously allowing standard interpretation of hazard ratios 

for the other risk factors.  

 

Sensitivity analyses 

 We performed multiple sensitivity analyses.  First, we eliminated the adapted form (5) of 

the Liu Comorbidity Index (15) because the index contains some disease conditions which 

overlap with conditions listed on the CMS 2728 dialysis intake form.  We next used more 

sensitive claims-based definitions of both ischemic and hemorrhagic stroke to perform the 

analyses.  We then eliminated individuals with a history of a previous stroke (either on the CMS 

2728 form, which captures predialysis events, on in claims during the first 90 days of dialysis), 

tand performed a subset analysis on patients who were on HD only (but who also had no 

additional strokes).  Finally, we conducted four additional analyses in the Medicare cohort, first 
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eliminating those with previous strokes and then confining the analysis to HD patients (who also 

did not have previous strokes). 
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