Supplemental Item 1

We searched the PubMed database for studies published up to January 1st 2020 containing key words on 'PGT' and 'kidney disease', including a list of ~225 known renal disease causing genes (Supplementary Table 1). Studies were selected based on predefined in- and exclusion criteria, namely that they mentioned the presence of familial kidney disease or a known causative mutation leading to the performance of PGT. All studies were assessed by two independent observers and decisions were made based on consensus discussion.

All in all, a total of 14 studies detailing PGT for a known genetic kidney disease were identified, including syndromal conditions such as Fraser syndrome which were not included in our own cohort. These studies cover nine renal indications was performed, leading to 39 unaffected live births in 124 PGT cycles (31% success rate).

Table 3 – Results of 14 studies on preimplantation genetic diagnostics for monogenic kidney disease

Study	Country	Disease	Gene(s)	Couples	Couples who undergo at	PGT cycles (n)	Ongoing	Live births
				counselled (n)	least one PGT cycle (n)		pregnancies (>12	from PGT (n)
							weeks GA) (n)	
Berckmoes et al., 2019 ²⁹	Belgium	ADPKD	PKD1 (n=33)	N=65	N=45	N=91	N=40 (of which	N=26
			PKD2 (n=2)				n=2 twin	
							pregnancies)	
		ARPKD	PKHD1 (n=9)					
Murphy et al, 2018 ²⁸	USA	ADPKD	PKD1 (n=7)	n=8	n=4	n=2	n=1	n=1

			PKD2 (n=1)					
Li et al, 2017 ³⁰	China	ADPKD	PKD1	n=1	n=1	n=1	n=1	n=1
Lu <i>et al.</i> , 2013 ²⁷	China	Meckel-Gruber syndrome	TMEM67	n=1	n=1	n=1	n=1*	n=1
Altarescu et al., 2012 ⁴⁸	Israel	Fabry disease	GLA	n=2	n=2	n=6	n=2	n=2
Ogur <i>et al.</i> , 2011 ²⁶	Poland	Fraser syndrome	FRAS1	n=2	n=2	PGT is planned for n=1	N/A	N/A
Lau <i>et al.</i> , 2010 ²⁵	USA	ARPKD	PKHD1	n=1	n=1	n=1	n=1*	n=1
Obradors et al., 2009 ²⁴	Spain	Von Hippel-Lindau disease	VHL	n=1	n=1	n=1	n=1	n=2
Vanneste et al., 2009 ²³	Belgium	Neurofibromatosis type 1	NF1 (n=2)	n=3	n=3	n=5	n=0	n=0
		Von Hippel-Lindau disease	VHL (n=1)			n=2	n=1	n=2
Altarescu et al., 2008 ²²	Israel	Tuberous sclerosis complex	TSC2	n=1	n=1	n=1	n=1*	n=1
Gigarel <i>et al.</i> , 2008 ⁴⁹	France	ARPKD	PKHD1	n=3	n=3	n=5	n=1	n=1
Renbaum et al., 2007 ²¹	Israel	Allagile disease	JAG1	n=1	n=1	n=1	n=0	n=0
De Rycke <i>et al.</i> , 2005 ²⁰	Belgium	ADPKD	PKD1	n=4	n=4	n=4	n=2	n=2
Rechitsky et al., 2002 ¹⁹	USA	Von Hippel-Lindau disease	VHL	n=1	n=1	n=3	n=0	n=0
Total				n=93	n=70	n=124	n=51	n=39

^{*} Two embryos transferred, case of vanishing twin.

ADPKD=autosomal dominant polycystic kidney disease, ARPKD=autosomal recessive polycystic kidney disease, PGT=preimplantation genetic diagnostics,

GA=gestational age, N/A=not applicable, NR=not reported, USA=United States of America