Supplementary Table 1: Common wearable devices on the market.

	Locations
	Type of device
	Company/Institution
	Product name
	Parameters
	FDA cleared

	Head
	　
	　
	　
	　
	　

	　
	Headbands
	Earable
	Earable
	EEG, EOG, EMG and sleep
	Yes

	
	
	Zeit
	Headband
	EEG
	No or not sure

	
	
	Bose 
	SoundSport Pulse
	HR
	No or not sure

	
	
	MIT
	Earphones
	HR and PPG
	No or not sure

	
	Glasses
	Korea University
	E-glasses
	EEG and EOG
	No or not sure

	
	
	Microsoft
	Glabella
	Pulse transit time and cuff-less BP
	No or not sure

	
	
	Google
	Google Glass
	HR and respiratory rate
	No or not sure

	Trunk
	　
	　
	　
	　
	　

	　
	Patches
	iRhythm
	iRhythm Zio
	HR and ECG
	Yes

	
	
	BardyDX
	BardyDX CAMTM
	HR and ECG
	Yes

	
	
	VivaLNK
	VivaLNK ECG
	HR and ECG
	Yes

	
	
	BioTelemetry
	BioTel Heart
	HR and ECG
	Yes

	
	
	MediBioSense
	Vital Patch
	HR, PA, temperature, and ECG
	Yes

	
	
	Global Instrumentation
	Global Instrumentation M5
	HR and ECG
	Yes

	
	
	Shenzhen Institute of Advanced Technology
	3-in 1
	HR, ECG, and PPG
	Yes

	
	Chest straps
	Polar
	Polar H10
	HR
	Yes

	
	
	Garmin
	Garmin HRM
	HR
	No or not sure

	
	
	Wahoo
	Fitness TICKR
	HR
	No or not sure

	
	T-shirts
	Hexoskin
	Hexoskin T-shirt
	HR, respiratory rate, PA, sleep, and ECG
	No or not sure

	
	
	Emglare
	Emglare T-shirt
	HR and ECG
	No or not sure

	
	
	AMSU
	AMSU T-shirt
	HR and ECG
	No or not sure

	
	
	Lenovo
	SmartVest
	HR and ECG
	No or not sure

	Limbs
	　
	　
	　
	　
	　

	　
	Watches
	Apple
	Apple Watch
	HR, PA, sleep, and ECG
	Yes

	
	
	Samsung
	Galaxy Watch
	HR and ECG
	Yes

	
	
	Fitbit
	Sense
	HR, PA, and sleep
	Yes

	
	
	Biobeat
	BB-613WP
	HR and cuffless BP
	Yes

	
	
	Omron
	HeartGuide
	HR, PA, sleep, and cuff-based BP
	Yes

	
	
	Huawei
	Watch GT 2
	HR, PA, and ECG
	Yes

	
	
	Withings
	ScanWatch
	HR, PPG, ECG, and sleep
	Yes

	
	
	Amazfit
	Amazfit GTR 3
	HR, SpO2, respiratory rate, and ECG
	No or not sure

	
	
	OPPO
	OPPO Watch ECG
	HR, PA, ECG, and sleep
	Yes

	
	Bands
	AliveCor
	KardiaBand
	HR and ECG
	Yes

	
	
	Samsung
	Galaxy Fit 2
	HR, PA, and sleep
	No or not sure

	
	
	Huawei
	Band
	HR, SpO2, and PA
	No or not sure

	
	
	Xiaomi
	Band
	HR, SpO2, PA, and sleep
	No or not sure

	
	
	Fitbit
	Charge 5
	HR, SpO2, ECG, PA, and sleep
	Yes

	
	
	Nike
	FuelBand
	PA
	No or not sure

	
	
	Codoon
	Wristband
	PA and sleep
	No or not sure

	
	
	Amazon 
	Halo Wristband
	PA, sleep, and body mass index
	No or not sure

	
	Rings
	Jakcom
	R3
	HR, PA, and sport
	No or not sure

	
	
	Motiv
	Ring
	HR, PA, and sleep
	No or not sure

	
	
	Oura
	Ring
	HR, PA, and sleep
	No or not sure

	
	Shoes 
	iFeel
	iFeel iit 
	PA
	No or not sure

	
	　
	NURVV Run
	Smart Insoles
	PA
	No or not sure


BP: Blood pressure; EEG: Electroencephalogram; EOG: Electrooculogram; EMG: Electromyography; ECG: Electrocardiography; FDA: Food and Drug Administration; HR: Heart rate; PPG: Photoplethysmography; PA: Physical activity; SpO2: Blood oxygen.

Supplementary Table 2: Summary of the validity of various wearable devices compared to criterion measure for PA, HR, and sleep.

	Parameter
	Reference
	Subjects
	Activity
	Criterion
	Devices
	Validity

	PA
	Case et al[27]
	N = 14 (4 males); 28.1 ± 6.2 years
	Walk 500 and 1500 steps twice each at 3.0 mph on a treadmill.
	Manual counting
	Digi-Walker SW-200, Fitbit Zip, Fitbit One, Fitbit Flex, Jawbone UP24, Nike Fuelband, iPhone 5s Fitbit App, iPhone 5s Health Mate App, iPhone 5s Moves App, Galaxy S4 Moves App.
	No specific values were reported, but it can be seen from the figures in the article that for all step trials, the Fitbit One had the best accuracy, followed by the Fitbit Zip and the Digi-Walker SW-200.

	
	Fokkema et al[28]
	N = 31 (15 males); 32 ± 12 years
	Participants walked three walking speeds for 10 min each: slow (3.2 km/h), average (4.8 km/h), and vigorous (6.4 km/h)
	Manual counting
	Polar Loop, Garmin Vivosmart, Fitbit Charge HR, Apple Watch Sport, Pebble Smartwatch, Samsung Gear S, Misfit Flash, Jawbone Up Move, Flyfit, Moves
	The most accurate device for the slow walking speed is Fitbit Charge (MAPE = −0.7%), followed by Garmin Vivosmart (MAPE = 1.0%).

The most accurate device for average walking speed is Apple Watch (MAPE = 0.0%), followed by Garmin Vivosmart (MAPE = 0.2%). 

The most accurate device for vigorous walking is Apple Watch (MAPE = 0.5%), followed by Samsung Gear (MAPE = 1.1%).

	
	Xie et al[29]
	N = 44 (22 males): 22.2 ± 2.2 years
	Resting, walking, running, cycling, and sleeping
	Manual counting
	Apple Watch 2, Samsung Gear S3, Jawbone Up3, Fitbit Surge, Huawei Talk Band B3, Xiaomi Mi Band 2, Dongdong App, Ledongli App.
	Dongdong App (MAPE: 1 ± 3%) < Ledongli App (MAPE: 2 ± 3%) < Huawei Talk Band B3 (MAPE: 2 ± 4%) < Fitbit Surge (MAPE: 6 ± 9%) < Jawbone Up3 (MAPE: 6 ± 16%) < Xiaomi Mi Band (MAPE: 6 ± 17%) < Samsung Gear (MAPE: 21 ± 33%) < Apple Watch (MAPE: 42 ± 37%).

	
	Höchsmann et al[30]
	N = 20 (6 males); 18–70 years
	Participants walked for 5 min at each of the predefined walking speeds of 1.6 km/h, 3.2 km/h, 4.8 km/h, and 6.0 km/h on a treadmill
	Manual counting
	iPhone SE, Samsung Galaxy S6 Edge, Garmin Vivofit 2, ActiGraph wGTX+.
	For treadmill walking ≥ 3.2 km/h, the MAPE of the iPhone SE (all positions) and the Garmin Vivofit was small (<3). For treadmill walking at 4.8 km/h and 6.0 km/h, Samsung Galaxy (MAPE<3%) and ActiGraph (MAPE<3%) showed small MAPE (<3%). The ActiGraph showed high MAPE (17–47) for all walking conditions. Overall, the iPhone SE and the Garmin Vivofit are accurate tools for step counting in different age groups and during various walking conditions.

	
	Boolani et al[31]
	N = 120 (74 males); 21.4 ± 3.7 years
	Two 6-minute walks, one at a comfortable pace and the other at a fast pace
	Manual counting
	Fitbit Zip, Garmin Vivofit, Basis B1 band, Misfit Shine, Runtastic Pedometer, Nike FuelbandS
	Fitbit Zip (MAPE = 0.18%, ICC = 0.76, ME = −1.2) < Garmin Vivofit (MAPE = 1.3%, ICC = 0.70, ME = 8.5) < Basis B1 band (MAPE = 2.2%, ICC = 0.60, ME = 14.2) < Misfit Shine (MAPE = 4.7%, ICC = 0.68, ME = 30.6) < Nike FuelbandS (MAPE = 8.6%, ICC = 0.22, ME = 56.4) < Runtastic Pedometer (MAPE = 12.8%, ICC = 0.64, ME = 83.6)

	
	Navalta et al[32]
	N = 20 (12 males); 22.2 ± 5.8 years
	Hiking and trail running
	Manual counting
	Fitbit Surge 2, Garmin Vivosmart, Leaf Health Tracker, Polar A360, Samsung Gear 2, Spire Activity Tracker, Stryd Power Meter.
	For 5-min hiking: Garmin Vivosmart (mean bias: −4.38 ± 27.93), Polar A360 (mean bias: 14.18 ± 49.62), Fitbit Surge (mean bias: 18.41 ± 57.08), Leaf health tracker (mean bias: −19.70 ± 30.14), Samsung Gear (mean bias: 20.31 ± 49.69), Stryd Power Meter (mean bias: 22.31 ± 28.89), Spire Activity Tracker (mean bias: 144.81 ± 136.82). 

For 5-min trail runs: Fitbit Surge (mean bias: 5.00 ± 140.66), Garmin Vivosmart (mean bias: −7.59 ± 20.87), Leaf Health Tracker (mean bias: −14.78 ± 13.86), Stryd Power Meter (mean bias: 16.09 ± 20.53), Samsung Gear (mean bias: 42.53 ± 140.46), Polar A360 (mean bias: 52.36 ± 84.59), Spire Activity Tracker (mean bias: 103.71 ± 242.49)

	
	Bunn et al[33]
	N = 20 (10 males); 
	According to standards of the Consumer Technology Association (CTA)
	Manual counting
	Apple iWatch series 1, Fitbit Surge, Garmin 235, Moto 360, Polar A360, Suunto Spartan Sport, Suunto Spartan Trainer, and TomTom Spark 3
	During walking, Moto 360 (MAPE = 1.07%) < Garmin (MAPE = 2.34%) Apple iWatch (MAPE = 3.72%) < Polar A360 (MAPE = 4.60%) < Suunto Trainer (MAPE = 4.99%) < TomTom (MAPE = 10.11%) < FitBit (MAPE = 11.20%) < Suunto Sport (MAPE = 22.93%).

During running, Moto 360 (MAPE = 0.32%) < Garmin (MAPE = 0.59%) < Suunto trainer (MAPE = 1.14%) < Suunto sport (MAPE = 2.04%) < TomTom (MAPE = 2.98%) < Apple iWatch (MAPE = 3.67%) < FibBit (MAPE = 5.16%) < Polar A360 (MAPE = 10.66%).

	Heart rate
	Gillinov et al[37]
	N = 50 (23 males); 38 ± 12 years
	Treadmill, stationary bicycle, elliptical trainer
	12-lead ECG
	Polar H7, Scosche Rhythm+, Apple Watch, Fitbit Blaze, Garmin Forerunner 235, TomTom Spark
	Polar H7 (rc = 0.996) < Apple Watch (rc = 0.92) < TomTom Spark (rc = 0.83) < Garmin Forerunner (rc = 0.81) < Scosche Rhythm (rc = 0.75) < Fitbit Blaze (rc = 0.67).

	
	Koshy et al[38]
	N = 102 (67 males); 68.0 ± 15.0 years
	-
	12-lead ECG
	Apple Watch Series 1 and Fitbit Blaze
	Bias was the calculated ME between the smart watches-HR and ECG-HR.

In sinus rhythm, both devices with a low bias (Fitbit Blaze & Apple Watch, Bias = 1 beat).

In atrial arrhythmias, Apple Watch (Bias = −5 beats) < Fitbit Blaze (Bias = −18 beats).

	
	Boudreaux et al[39]
	N = 50 (22 males); 22.71 ± 2.99 years
	Graded cycling and three sets of four resistance exercises.
	6-lead ECG
	Apple Watch Series 2, Fitbit Blaze, Fitbit Charge 2, Polar H7, Polar A360, Garmin Vivosmart HR, TomTom Touch, and Bose SoundSport Pulse headphones
	During graded exercise cycling: Apple Watch (MAPE = 4.14%) < Polar H7 (MAPE = 6.87%) < Bose (MAPE = 7.44%) < TomTom (MAPE = 12.33%) < Polar A360 (MAPE = 19.48%) < Fitbit Blaze (MAPE = 21.6%) < Fitbit Charge (MAPE = 21.36%) < Garmin Vivosmart (MAPE = 25.38%).

During resistance exercise: Bose (MAPE = 6.24%) < Polar H7 (MAPE = 6.31%) < Polar A360 (MAPE = 8.66%) < Fitbit Charge (MAPE = 9.79%) < Garmin Vivosmart (MAPE = 10.66%) < Apple Watch (MAPE = 10.99%) < Fitbit Blaze (MAPE = 13.74%) < TomTom (MAPE = 19.14%)

	
	Thiebaud et al[40]
	N = 20 (18 males); 22.0 ± 3 years.
	Participants exercised on a treadmill at 3.2 km/h, 4.8 km/h, 6.4 km/h, 8 km/h, and 9.7 km/h for 3 min at each speed with no rest between speeds.
	12-lead ECG
	Fitbit Surges, Microsoft Bands, TomTom Cardios
	Fitbit Surge (MAPE: 2.17–8.06%), TomTom Cardio (MAPE: 1.01–7.49%), Microsoft Band (MPAE: 1.31–7.37%).

	
	Xie et al[29]
	N = 44 (22 males): 22.2 ± 2.2 years
	Resting, walking, running, cycling, and sleeping
	Manual counting
	Samsung Gear S3, Apple Watch Series 2, Fitbit Surge, Xiaomi Mi Band 2
	Samsung Gear (MAPE: 4 ± 3%) < Apple Watch (MAPE: 7 ± 8%) < Fitbit Surge (MAPE: 8 ± 12%) < Xiaomi Mi Band (MAPE: 12 ± 13%)

	
	Hwang et al[41]
	N = 51 (27 males); 44.1 ± 16.6 years
	-
	12-lead ECG
	Apple Watch Series 2, Samsung Galaxy Gear S3, and Fitbit Charge 2
	The accuracy of the baseline HR measurement, i.e., within ±5 beats/min of the ECG value: Apple (100%), Galaxy (100%), and Fitbit (100%).

The accuracy of the supraventricular tachyarrhythmia HR measurements to within ±5 beats/min of the ECG value: Apple (89.3%), Galaxy (89.7%), and Fitbit (83.3%);

	
	Thomson et al[42]
	N = 30 (15males); 23.5 ± 3.0 years
	Three-minute stages with speed and incline increasing every 3 min until volitional fatigue
	12-lead ECG
	Fitbit Charge HR 2 and Apple Watch
	Relative error rates (RER) were used. Apple Watch (RER: 2.4–5.1%) < Fitbit (RER: 3.9–13.5%)

	
	Navalta et al[43]
	N = 21 (11 males); 31 ± 11 years
	Out-and-back trail runs with the first 1.61 km is uphill, and then return 1.61 km is downhill
	1-lead ECG
	Garmin Fenix 5, Jabra Elite Sport earbuds, Motiv ring, Scosche Rhythm+, Suunto

Spartan Sport watch
	Validity was determined through three methods: MAPE, Bland-Altman Limits of Agreement (LOA), and Lin’s Concordance Coefficient (rc).

Suunto Spartan Sport (MAPE = 2%, LOA = −62 to 61, rc = 0.96), Scosche Rhythm+ (MAPE = 6%, LOA = −114 to 120, rc = 0.79), Garmin Fenix (MAPE = 13%, LOA = −32 to 162, rc = 0.32), Motiv ring (MAPE = 16%, LOA = −52 to 96, rc = 0.29), Jabra Elite Sport (MAPE = 23%, LOA = −464 to 503, rc = 0.38).

	
	Baek et al[44]
	N = 15 (males); 23.7 ± 3.0 years
	Conventional and Nordic walking
	12-lead ECG
	Polar H7 and Fitbit Charge 2
	In conventional walking, Polar H7 (AbsD: 1.30 ± 2.12 beats/min) < Fitbit Charge (AbsD: 3.68 ± 4.51 beats/min).

In Nordic walking, Polar H7 (AbsD: 1.37 ± 4.87 beats/min) < Fitbit Charge (AbsD: 6.60 ± 6.81 beats/min).

Overall, Polar H7 (rc = 0.96) > Fitbit Charge (rc = 0.84).

	Sleep
	De Zambotti et al[55]
	N = 65 (37 males); 15.8 ± 2.5 years
	-
	PSG
	Jawbone UP
	Mean (or bias) and SD of the differences between Jawbone UP and PSG outcomes were provided. The MEs ± SD of the Jawbone UP for measuring TST, sleep efficiency, total wake time, SOL, and WASO were −10.0 ± 20.5, −1.9 ± 4.2, 9.3 ± 20.4, −1.3 ± 10.9, and 10.6 ± 14.7 min, respectively.

	
	De Zambotti et al[56]
	N = 44 (18 males); age: 19–61 years
	-
	PSG
	Fitbit Charge 2™
	Mean (or bias) and SD of the differences between Fitbit

Charge and PSG outcomes were provided. For participants without PLMS (N = 35): TST (−9 ± 24 min), SOL (4 ± 9 min), WASO (5 ± 19 min), time in N1+N2 (light sleep) (−34 ± 34 min), time in N3 (deep sleep) (24 ± 28 min), time in REM (1 ± 27 min).

For participants with PLMS (N = 9): TST (−8 ± 39 min), SOL (7 ± 10 min), WASO (2 ± 26 min), time in N1+N2 (light sleep) (−35 ± 49 min), time in N3 (deep sleep) (28 ± 35 min), time in REM (0 ± 37 min).

	
	De Zambotti rt al. 2019.[57]
	N = 41 (28 males); 17.2 ± 2.4 years
	-
	PSG
	ŌURA ring
	Mean (or bias) and SD of the differences between ŌURA ring and PSG outcomes were reported. TST (−1.3 ± 21.7 min), SOL (−0.2 ± 7.0 min), WASO (1.5 ± 20.7 min), time in N1+N2 (−3.7 ± 66.2 min), time in N3 (19.6 ± 41.2 min), time in REM (−17.2 ± 50.2 min)

	
	Chinoy et al[58]
	N = 34 (14 males); 28.1 ± 3.9 years.
	-
	PSG
	Fatigue Science Readiband, Fitbit Alta HR, Garmin Fenix 5S, Garmin Vivosmart 3
	Fatigue Science Readiband (bias: 13.3 min for TST, 2.8 min for SE, −0.7 min for SOL, −12.5 min for WASO, NANs for light sleep, deep sleep, and REM);

Fitbit Alta HR (bias: 2.6 min for TST, 0.9 min for SE, −3.1 min for SOL, −2.1 min for WASO, 20.0 min for light sleep, −6.0 min for deep sleep, −11.4 min for REM);

Garmin Fenix (bias: 43.7 min for TST, 10.6 min for SE, 0.8 min for SOL, −49.5 min for WASO, 29.0 min for light sleep, 6.1 min for deep sleep, −8.6 min for REM)

Garmin Vivosmart (bias: 46.8 min for TST, 10.1 min for SE, −1.1 min for SOL, −47.6 min for WASO, 34.7 min for light sleep, 3.7 min for deep sleep, 8.4 min for REM).


AbsD: Absolute difference; ECG: Electrocardiography; HR: Heart rate; ICC: Intra-class correlation coefficient; MAPE: Mean absolute percent error; ME: Mean difference; PA: Physical activity; PLMS: Periodic limb movement of sleep; PSG: Polysomnography; rc: Lin’s concordance correlation coefficient; REM: Rapid-eye-movement; SOL: Sleep onset latency; TST: Total sleep time; WASO: Wake after sleep onset.
Supplementary Table 3: Summary of the use of wearable devices in cardiovascular care.

	Cardiovascular care
	Reference 
	Year
	Wearable Device 
	Technology
	Summary

	Arrhythmia detection
	Hannun et al[61]
	2019
	Zio patch (iRhythm Technologies, USA)
	Deep neural network
	A DNN was trained on 91,232 single-lead ECGs from 53,549 patients to classify 12 rhythm classes by using the Zio monitor (iRhythm Technologies, USA). The DNN achieved an average area under the ROC of 0.97 on a test dataset consisting of 328 ECG records from 328 patients.

	
	mSToPS Trial[62]
	2018
	Zio patch (iRhythm Technologies, USA)
	Cox proportional model
	The mSToPS Trial included 3476 individuals in the non-monitored cohort and 2659 in the monitored cohort (1366 in the immediate monitoring group using Zio patch and 1293 in the delayed monitoring group). After 4 months, the incidence of new AF cases was 3.9% (53/1366) in the immediate monitoring group vs. 0.9% (12/1293) in the delayed monitoring group (AbsD, 3.0% [95% CI: 1.8–4.1%]). After 12 months, 1738 of 2659 in the monitored cohort finished follow-up; 190 new cases of AF were detected, 109 of 1738 (6.7 per 100 person-years) in the actively monitored cohort and 81 of 3476 (2.6 per 100 person-years) among observational controls (AbsD, 4.1 [95% CI: 3.9–4.2]).

	
	Apple heart study[63]
	2019
	Apple Watch
	Deep neural network
	The study included 419,297 participants and used the Apple Watch PPG sensor to measure changes in blood flow to distinguish irregular pulse; 2161 participants (0.52%) received notifications of an irregular pulse. Among 2161 participants, 450 finished the validation via ECG patches after receiving irregular pulse notifications. AF was identified in 34% participants (97.5% CI: 29 to 39) (139/450). Of the 86 participants who received irregular pulse notifications on Apple devices during simultaneous use of an ECG patch, 72 showed AF on concurrent ECG patch strips. This resulted in a PPV for the irregular pulse notification of 0.84 (95% CI: 0.76 to 0.92).

	
	Health eHeart Study[64]
	2018
	Apple Watch
	Deep neural network
	9750 participants (347 participants with AF) were enrolled in the study. The DNN exhibited a C statistic of 0.97 (95% CI: 0.94–1.00; P < 0.001) to detect AF against the reference standard 12-lead ECG–diagnosed AF in the external validation cohort of 51 patients undergoing cardioversion. In an exploratory analysis relying on self-report persistent AF in ambulatory participants, the C statistic was 0.72 (95% CI: 0.64–0.78).

	
	Bumgarner et al[65]
	2018
	Apple Watch combination with the AliveCor KardiaBand
	-
	A total of 100 patients were enrolled (age 68 ± 11 years) in the study. There were 169 simultaneous ECG and Kardia Band recordings; 57 recordings were noninterpretable by the Kardia Band. Compared with ECG, the Kardia Band interpreted AF with 93% sensitivity, 84% specificity, and a K coefficient of 0.77. Among 113 cases where Kardia Band and physician readings of the same recording were interpretable, the agreement was excellent (K coefficient = 0.88).

	
	Huawei Heart Study[66]
	2019
	Huawei Watch GT, Honor Watch, and Honor Band
	PPG algorithm
	The study aimed to determine the feasibility of AF screening in a large population-based cohort using smart device-based PPG technology, combined with a clinical care AF management pathway. Among those with PPG monitoring (mean age 35 years, 86.7% male), 424 (mean age 54 years, 87.0% male) received a “suspected AF” notification (424/187,912, 0.23%). Of those effectively followed up, 227 individuals (227/262, 87.0%) were confirmed as having AF, with the PPV of PPG signals being 91.6% (95% CI: 91.5–91.8%).

	
	Chen et al[67]
	2020
	Amazfit Health Band 1S (Huami Technology, Anhui, China)
	Deep learning (SEResNet)
	The study assessed PPG and single-channel ECG data collected from 401 patients (251 normal individuals and 150 ECG-diagnosed AF patients) using the Amazfit Health Band 1S. The algorithm was developed using a convolution neural network (SEResNet) based on the RealBeats Artificial Intelligence Biological Data Engine (Huami Technology). The sensitivity, specificity, and accuracy of wristband PPG readings were 88.00%, 96.41%, and 93.27%, respectively, and those of wristband ECG readings were 87.33%, 99.20%, and 94.76%, respectively. When physicians judged the original wristband ECG records, the sensitivity, specificity, and accuracy were 96.67%, 98.01%, and 97.51%, respectively.

	BP measurement
	Watanabe et al[70]
	2017
	Cuffless BP estimation
	PPG algorithm 
	The CLB only uses PPG to estimate BP. Various feature parameters of the pulse wave in 887 participants at rest and under exercise and mental stress were collected and extracted from one PPG sensor. These parameters were then applied to the BP estimation algorithm. A validation test was conducted via simultaneously monitoring BP with the CLB and with a cuff-type auscultatory device. The MAD between the BP value of CLB and the cuff-wearing sphygmomanometer was <8 mm Hg (6.1 for SBP), suggesting that the BP values measured by using CLB meet the Institute of Electrical and Electronics Engineers 1708–2014 standard.

	
	Moon et al[71]
	2020
	InBodyWATCH
	Neural network
	35 adults (age 57.1 ± 17.9 years) were enrolled in the study. The accuracy of BP measurement using InBodyWATCH with an individualized estimation based on a neural network model and using a manual sphygmomanometer was compared. The ME was 2.2 mmHg ± 6.1 mmHg for SBP and −0.2 mmHg ± 4.2 mmHg for DBP; these were not significant (P = 0.472 for SBP and P = 0.880 for DBP). The estimated SBP/DBP ratios obtained from the InBodyWATCH within ±5 mmHg of manual SBP/DBP were 71.4%/83.8%; within ±10 mmHg, they were 86.7%/98.1%; and within ±15 mmHg, they were 97.1%/99.0%.

	
	Chandrasekhar et al[72]
	2018
	A smartphone
	Stepwise regression
	A smartphone-based BP monitoring via the oscillometric finger-pressing method was reported. The training data was collected from 31 individuals (age, 31 ± 7 years; height, 170 ± 8 cm; weight, 68 ± 10 kg; 39% females) via a standard automatic arm cuff. Stepwise regression was used to determine the model parameters. The testing data set was collected from 30 new users and five additional experienced users (age, 33 ± 8 years; height, 173 ± 4 cm; weight, 72 ± 5 kg; 0% females). The smartphone-based device yielded bias and precision errors of 3.3 mmHg and 8.8 mmHg for SBP and −5.6 mmHg and 7.7 mmHg for DBP over a 40- to 50-mmHg range of BP.

	
	Van Helmond et al[73]
	2019
	Everlast watch, BodiMetrics
	Statistics
	The study analyzed 85 individuals, including 36 (42%) women, 32 (38%) self-reported hypertension, and 97% of these (n = 31) reported taking antihypertensive medications. The Everlast smartwatch and the BodiMetrics performance monitor presented low accuracy and were not competitive as BP measurement devices. The average differences between the Everlast smartwatch and hospital-grade automated sphygmomanometer were systolic BP of 16.9 ± 13.5 mm Hg and diastolic BP of 8.3 ± 6.1 mm Hg. The average difference between the BodiMetrics performance monitor and hospital-grade automated sphygmomanometer was systolic BP of 5.3 ± 4.7 mm Hg.

	Other diagnostic applications

	Diabetes, high cholesterol, high BP, and sleep apnea detection
	Ballinger et al[74]
	2018
	Fitbit, Apple Watch, and Wear OS
	Deep learning (Semi-supervised, multi-task LSTM)
	The study trained and validated a semi-supervised, multi-task LSTM on 57,675 person-weeks of data from popular wearable devices such as Fitbit, Apple Watch, or Android Wear, showing high accuracy at detecting multiple medical conditions, including diabetes (0.8451), high cholesterol (0.7441), high BP (0.8086), and sleep apnea (0.8298).

	Diabetes detection
	Avram et al[75]
	2020
	Azumio Smartphone app
	Deep neural network
	The study developed a DNN to detect diabetes on 53,870 individuals as a primary cohort based on PPG collected from smartphones and validated in 7806 contemporary cohorts and 181 clinic cohorts. The network achieved an area under the curve for prevalent diabetes of 0.766 in the primary cohort (95% CI: 0.750–0.782; sensitivity 75%, specificity 65%) and 0.740 in the contemporary cohort (95% CI: 0.723–0.758; sensitivity 81%, specificity 54%).

	Hyperkalaemia diagnosis
	Galloway et al[76]
	2018
	AliveCor ECG
	Deep neural network
	Study data included 709,000 patients, 2.1 million ECGs, and 4.0 million serum potassium values. Each patient used an investigational version of a portable, AliveCor smartphone ECG device to acquire a 4-hour ECG recording during two separate dialysis sessions, with concurrent blood testing. The DNN was trained to detect hyperkalemia using only ECG leads I and II. The sensitivity by duration was 94%, at a specificity of 74%.

	Myocardial infarction
	Sopic et al[77]
	2018
	SmartCardia INYU
	Machine learning (Random Forest classifications)
	Based on random forest classifications, this paper demonstrated a real-time early detection and prevention of myocardial infarction technique on SmartCardia INYU device and evaluated its energy consumption and battery life performance. The participators consisted of 104 individuals (83 in the training set and 21 subjects in the test set). The classifier that uses all available features (n = 72) reaches a geometric mean of 83.26% (Sensitivity = 87.95%, Specificity = 78.82%).

	Arterial stiffness measurement
	Miao et al[78]
	2019
	SIAT 3-in-1
	Machine learning
	This study, including valid data from 501 individuals, proposed a wearable sensor for arterial stiffness monitoring via machine learning techniques. The features were extracted from ECG and PPG signals and were selected based on a genetic algorithm. Using Omron arterial stiffness equipment as the reference, the proposed model achieved the best accuracy of 0.89, 0.2136, and 6.2432 in correlation coefficient, ME, and standard difference for vascular age estimation.

	Cardiovascular risk assessment
	Women’s Health Study[79]
	2018
	ActiGraph GT3X+
	Statistics (proportional hazards regression)
	The study analyzed 16741 women wearing triaxial accelerometers (ActiGraph GT3X+) for ≥10 h/day on ≥4 days. Via proportional hazards regression, the associations of the total volume of PA (PA, total accelerometer counts per day), MVPA, minutes per day, LPA, minutes per day, and sedentary behavior (minutes per day) with mortality were examined. A strong inverse association between overall volume of PA and all-cause mortality was observed. The magnitude of risk reduction (≈60%–70%, comparing extreme quartiles) was far larger than that estimated from metanalyses of studies using self-reported PA (≈20%–30%). 

	
	Akbulut et al[80]
	2018
	CVDiMo
	Machine learning (Multiclass decision forest)
	The study proposed a wearable device called CVDiMo which provides continuous medical monitoring and creates a health profile with the risk of disease over time. Six different biosignals (ECG, Body Temperature, Pulse Oximeter, GSR, BP, Glucometer) from two different test groups with 30 participants were analyzed. Besides the patients’ biosignals, using the PA results and stress levels deduced from the emotional state analysis reached a higher performance in risk estimation. The highest accuracy of classifying the short-term health status was 96% on the multiclass decision forest model.


AbsD: Absolute difference; AF: Atrial fibrillation; BP: Blood pressure; CVDiMo: Cardiovascular Disease Monitoring; CI: Confidence interval; CLB: Cuff-less BP estimation; DBP: Diastolic blood pressure; DNN: Deep neural network; ECG: Electrocardiogram; GSR: Galvanic Skin Response; LPA: Light physical activity; LSTM: Long-short term machine; MAD: Mean absolute difference; ME: Mean difference; MVPA: Moderate to vigorous physical activity; PA: Physical activity; P: P-value; PPG: Photoplethysmography; PPV: Positive predictive value; ROC: Receiver operating characteristic curve; SBP: Systolic blood pressure.
