[bookmark: _Hlk148953837]Table 1. APOA5 variants reported in literature and/or clinical testing.
	[bookmark: _Hlk151714176]Variant Type
	Nucleotide Change
	Amino Acid Changea,b
	ACMG classificationc
	Molecular defect (if applicable) and related notes
	Previously reported in literature?

	Regulatory
	c.-1464T>C
	N/A
	VUS
	Creates a putative vitamin D receptor binding site which increases APOA5 promoter activity. Also associated with decreased HDL-C in vitamin D deficient patients.
	Yes [1]

	Regulatory
	c.-1131T>C
	N/A
	Benign
	In 100% linkage disequilibrium with c.-3A>G and c.*158T>C. Together, these 3 variants have been shown to reduce APOA5 expression, though the exact role of c.-1131T>C in this is unclear, unlike the other two variants. Component of APOA5*2 Haplotype.
	Yes [2-7]

	Splicing
	c.-33+1G>A
	N/A
	Likely Pathogenic
	Splicing donor site null variant that results in skipping of exon 1 during transcription, which contains a portion of the signal peptide of APOA5.
	Yes [8]

	Regulatory
	c.-3A>G
	N/A
	Benign
	In 100% linkage disequilibrium with c.-1131T>C and c.*158T>C. Together, these 3 variants have been shown to reduce APOA5 expression. Specifically, this variant has two purported functional impacts. Firstly, the transcription factor GATA4 only binds the wild-type allele of this variant. Secondly, this variant impacts the Kozak sequence of APOA5, which is thought to impact translation initiation. Component of APOA5*2 Haplotype.
	Yes [7,9,10]

	Gross Deletion
	c.16_39del
	p.Ala6_Ala13del
	Likely pathogenic
	Partial deletion of signal sequence leads to hepatic missorting of protein to lipid droplets which subsequently results in impaired secretion of protein.
	Yes [11]

	Splicing
	c.49+1G>A
	N/A
	Likely Pathogenic
	Abolishes donor splice site of intron 2 leading to altered mRNA that encodes a truncated protein.
	Yes [12]

	Splicing
	c.49+5G>C
	N/A
	Likely Pathogenic
	Predicted to abolish donor splice site of intron 2 leading to altered mRNA that encodes a truncated protein.
	Yes [13]

	Splicing
	c.50-1G>A
	N/A
	Likely Pathogenic
	Predicted to abolish functionality of acceptor splice site of intron 2 leading to altered mRNA that encodes a truncated protein.
	Yes [14]

	Missense
	c.56C>G
	p.Ser19Trp
	VUS
	Variant produces a less efficient signal peptide that is predicted to reduce APOA5 secretion by up to 49%. Variant is considered VUS due to preserved protein function, inconsistent segregation with disease, high population frequency, etc. Best regarded as a risk factor and not a disease-causing variant in isolation. Only component of APOA5*3 haplotype.
	Yes [5,15-19]

	Small Deletion
	c.58delG
	p.Ala20Profs*37
	Likely Pathogenic
	Deletion alters reading frame, resulting in altered mRNA that encodes a truncated protein. Truncation at amino acid 37 eliminates ~90% of the protein, abolishing all functional domains of APOA5.
	No (found in our own clinical testing)

	Small duplication
	c.73_76dup
	p.Gly26Glufs*37
	Likely Pathogenic
	Duplication alters reading frame resulting in mRNA encoding truncated protein. ~90% of the protein is lost, abolishing all functional domains.
	No (reported in LOVD3 only)

	Missense
	c.77G>T
	p.Gly26Val
	VUS
	Unknown
	Yes [20]

	Small Deletion
	c.77delG
	p.Gly26Alafs*31
	Likely Pathogenic
	Deletion alters reading frame resulting in mRNA encoding truncated protein. ~90% of protein is lost, abolishing all functional domains of APOA5.
	Yes [8]

	Missense
	c.104G>A
	p.Ser35Asn
	VUS
	Unknown
	Yes [20]

	Small Deletion
	c.109delG
	p.Asp37Thrfs*20
	Likely Pathogenic
	Deletion alters reading frame resulting in mRNA encoding truncated protein. >90% of protein is lost, abolishing all functional domains of APOA5.
	No (found in our own clinical testing)

	Small Deletion
	c.117_120del
	p.Arg40Trpfs*16
	Likely Pathogenic
	Deletion alters reading frame resulting in mRNA encoding truncated protein. >90% of protein is lost, abolishing all functional domains of APOA5.
	No (reported in ClinVar only)

	Missense
	c.119G>T
	p.Arg40Met
	Likely Benign
	Unknown. Considered benign due to gnomAD maximal non-founder subpopulation allele frequency of 0.269% which is greater than threshold for disease (0.1%).
	Yes [21]

	Small Deletion
	c.138del
	p.Gln46Hisfs*11
	Likely Pathogenic
	Deletion alters reading frame resulting in mRNA encoding truncated protein. >90% of protein is lost, abolishing all functional domains of APOA5.
	No (reported in LOVD3 only)

	Missense
	c.154G>A
	p.Glu52Lys
	VUS
	Unknown
	Yes [22]

	Nonsense
	c.154G>T
	p.Glu52Term
	Likely Pathogenic
	Nonsense SNP produces mRNA that encodes truncated protein due to premature stop codon. ~85% of the protein is eliminated resulting in loss of all functional domains.
	No (reported in ClinVar only)

	Splicing
	c.161+3G>C
	N/A
	Likely Pathogenic
	Abolishes donor splice site of intron 3 leading to altered mRNA that skips exon 3 entirely and results in a truncated peptide that is a predicted 18 amino acids long.
	Yes [23]

	Splicing
	c.161+5G>C
	N/A
	Likely Pathogenic
	Predicted to severely decrease the binding capacity of the donor splice site of intron 3 suggesting splicing defect. Patient homozygous for this variant and seemingly no other rare pathogenic APOA5 variants was APOA5 deficient.
	Yes [8,24,25]

	Splicing
	c.162-43G>A
	N/A
	VUS
	Unknown
	Yes [26]

	Missense
	c.197A>G
	p.Asn66Ser
	VUS
	Unknown
	Yes [27]

	Small Deletion
	c.211delC
	p.Leu71Trpfs*4
	Likely Pathogenic
	Deletion alters reading frame resulting in mRNA encoding truncated protein. ~80% of protein is lost, abolishing all functional domains of APOA5.
	Yes [8]

	Missense
	c.278G>A
	p.Arg93Gln
	VUS
	Unknown
	Yes [21]

	Missense
	c.280C>T
	p.Arg94Trp
	VUS
	Unknown
	Yes [21]

	Nonsense
	c.283C>T
	p.Gln95Term
	Likely Pathogenic
	Nonsense SNP produces mRNA that encodes truncated protein due to premature stop codon. ~75% of the protein is eliminated resulting in loss of all functional domains.
	Yes [21]

	Nonsense
	c.289C>T
	p.Gln97Term
	Likely Pathogenic
	Nonsense SNP produces mRNA that encodes truncated protein due to premature stop codon. ~75% of the protein is eliminated resulting in loss of all functional domains.
	Yes [8,21,28-35]

	Nonsense
	c.292G>T
	p.Glu98Term
	Likely Pathogenic
	Nonsense SNP produces mRNA that encodes truncated protein due to premature stop codon. ~75% of the protein is eliminated resulting in loss of all functional domains.
	Yes [8,35,36]

	Missense
	c.295G>A
	p.Glu99Lys
	VUS
	Unknown
	Yes [20]

	Small Deletion
	c.295_297delGAG
	p.Glu99del
	VUS
	Predicted to disrupt amphipathic N-terminal domain α-helix configuration due to elimination of negatively-charged amino acid on the hydrophilic site of the helix.
	Yes [8,37]

	Small Deletion
	c.305_307del
	p.Glu102del
	VUS
	Unknown. Does not appear to be an α-helix forming residue[37,38,39] so effect is difficult to predict.
	No (reported in LOVD3 only)

	Missense
	c.313G>T
	p.Ala105Ser
	VUS
	Unknown
	Yes [21]

	Small Insertion
	c.326_327insC
	p.Tyr110Leufs*158
	Likely Pathogenic
	Insertion alters reading frame resulting in mRNA encoding truncated protein. >50% of protein is lost. N-terminal hydrophilic domain is in-tact. All other functional domains are interrupted or eliminated.
	Yes [14,40]

	Missense
	c.331A>G
	p.Met111Val
	VUS
	Unknown
	Yes [8]

	Missense
	c.346G>C
	p.Glu116Gln
	VUS
	Unknown but has been studied amongst numerous other variants as part of several investigations into the role de novo variants in Autism Spectrum Disorder.
	Yes [41-43]

	Nonsense
	c.346G>T
	p.Glu116Term
	Likely pathogenic
	Nonsense SNP produces mRNA that encodes truncated protein due to premature stop codon. ~70% of the protein is eliminated resulting in loss of or serious  interruption of all functional domains.
	Yes [21]

	Missense
	c.352G>A
	p.Val118Met
	VUS
	Unknown
	Yes [8]

	Missense
	c.377G>A
	p.Arg126Gln
	VUS
	Unknown
	No (reported in LOVD3 only)

	Missense
	c.398C>G
	p.Thr133Arg
	VUS
	Found in heterozygosity in patient with normal post-heparin LPL mass but no post-heparin LPL activity.
	Yes [44]

	Nonsense
	c.415C>T
	p.Gln139Term
	Likely Pathogenic
	Nonsense SNP produces mRNA that encodes truncated protein due to premature stop codon. >60% of the protein is eliminated resulting in loss of and serious interruption of all functional domains.
	Yes [40,45]

	Small Deletion
	c.427delC
	p.Arg143Alafs*57
	Likely Pathogenic
	Deletion alters reading frame resulting in mRNA encoding truncated protein. ~45% of protein is lost, leading to loss of GPIHBP1 and Heparin binding domain and C-terminal Lipid Binding Domain.
	Yes [8,21,22,46-50]

	Missense
	c.434A>G
	p.Gln145Arg
	VUS
	Unknown
	Yes [21,22]

	Missense
	c.436G>A
	p.Glu146Lys
	VUS
	Unknown
	Yes [8]

	Nonsense
	c.442C>T
	p.Gln148Term
	Likely pathogenic
	Nonsense SNP produces mRNA that encodes truncated protein due to premature stop codon. ~60% of the protein is eliminated resulting in loss of and serious interruption of all functional domains.
	Yes [51]

	Small Deletion
	c.447_450delGCAG
	p.Glu149Aspfs*50
	Likely Pathogenic
	Deletion alters reading frame resulting in mRNA encoding truncated protein. ~45% of protein is lost, leading to loss of GPIHBP1 and Heparin binding domain and C-terminal Lipid Binding domain.
	Yes [8]

	Small Insertion-Deletion
	c.447delGinsCTC
	p.Glu149Aspfs*52
	Likely Pathogenic
	Insertion-deletion alters reading frame resulting in mRNA encoding truncated protein. ~45% of protein is lost, leading to loss of GPIHBP1 and Heparin binding domain and C-terminal Lipid Binding domain.
	Yes [52]

	Missense
	c.457G>A
	p.Val153Met
	Benign
	Unknown. Benign because of very high gnomAD maximal non-founder and founder subpopulation allele frequencies of 11.917% and 4.936%, respectively. It has also been observed in the homozygous state in population databases more than expected for disease.
	Yes [20,46,53,54]

	Nonsense
	c.466G>T
	p.Glu156Term
	Likely Pathogenic
	Nonsense SNP produces mRNA that encodes truncated protein due to premature stop codon. ~60% of the protein is eliminated resulting in loss of and serious interruption of all functional domains.
	No (reported in ClinVar only)

	Missense
	c.473C>T
	p.Thr158Ile
	VUS
	Unknown
	Yes [8]

	Missense
	c.482A>G
	p.Gln161Arg
	VUS
	Unknown
	No (reported in LOVD3 only)

	Missense
	c.482A>T
	p.Gln161Leu
	VUS
	Unknown
	No (reported in LOVD3 only)

	Missense
	c.494G>A
	p.Gly165Asp
	VUS
	Unknown
	Yes [22]

	Missense
	c.494G>C
	p.Gly165Ala
	VUS
	Unknown
	Yes [46]

	Small duplication
	c.494dup
	p.Val166Argfs*102
	Likely Pathogenic
	Duplication alters reading frame resulting in mRNA encoding truncated protein. Loss of 201 amino acids, leading to loss of the lipid droplet binding domain, GPIHBP1 and Heparin binding domain and C-terminal Lipid Binding domain. Additionally, ClinVar comments indicate that this variant has been observed in a patient with chylomicronemia.
	No (reported in ClinVar only)

	Missense
	c.518T>C
	p.Leu173Pro
	VUS
	Unknown
	Yes [34]

	Small Duplication
	c.550dup
	p.Thr184Asnfs*84
	Likely Pathogenic
	Duplication alters reading frame resulting in mRNA encoding truncated protein. Loss of ~50% of protein leading to elimination of the lipid droplet binding domain, GPIHBP1 interacting binding domain, and C-terminal lipid binding domain.
	No (reported in LOVD3 only)

	Missense
	c.551C>G
	p.Thr184Ser
	VUS
	Unknown
	Yes [8,55,56]

	Missense
	c.553G>T
	p.Gly185Cys
	VUS
	Unknown. Likely a risk factor much like S19W or -1131T>C are in some populations. Interestingly, this variant is negatively associated with obesity risk in the Chinese population while still raising TG.
	Yes [21,57-59]

	Missense
	c.563A>G
	p.Lys188Arg
	VUS
	Unknown
	Yes [36]

	Missense
	c.578C>T
	p.Pro193Leu
	VUS
	Unknown
	Yes [8]

	Small Deletion
	c.579_592del14
	p.Tyr194Glyfs*69
	Likely Pathogenic
	Deletion alters reading frame resulting in mRNA encoding truncated protein. ~28% of protein is lost, leading to loss of GPIHBP1 and Heparin binding domain and C-terminal Lipid Binding domain.
	Yes [60]

	Missense
	c.589A>G
	p.Ser197Gly
	VUS
	Unknown
	Yes [21]

	Small Deletion
	c.593_606del14
	p.Leu198Argfs*65
	Likely Pathogenic
	Deletion alters reading frame resulting in mRNA encoding truncated protein. ~28% of protein is lost, leading to loss of GPIHBP1 and Heparin binding domain and C-terminal Lipid Binding domain.
	Yes [49]

	Missense
	c.610C>T
	p.Arg204Cys
	VUS
	Unknown
	Yes [8]

	Small Deletion
	c.614_624del11
	p.His205Profs*59
	Likely Pathogenic
	Deletion alters reading frame resulting in mRNA encoding truncated protein. ~28% of protein is lost, leading to loss of GPIHBP1 and Heparin binding domain and C-terminal Lipid Binding domain.
	Yes [61]

	Missense
	c.640G>C
	p.Ala214Pro
	VUS
	Unknown
	Yes [8]

	Missense
	c.644C>T
	p.Pro215Leu
	Likely Benign
	Unknown. Considered benign because allele frequency in gnomAD maximal non founder subpopulations is higher than expected for disease at 0.216%. It has also been observed in the homozygous state in population databases.
	Yes [21,40]

	Small Duplication
	c.653_654dup
	p.Ala219Profs*79
	Likely Pathogenic
	Duplication alters reading frame resulting in mRNA encoding truncated protein. ~18% of protein is lost, leading to loss of C-terminal portion of the GPIHBP1 and Heparin binding domain and C-terminal Lipid Binding domain.
	No (reported in LOVD3 only)

	Small Deletion
	c.654delC
	p.Ala219Profs*78
	Likely Pathogenic
	Deletion alters reading frame resulting in mRNA encoding truncated protein. ~18% of protein is lost, leading to loss of C-terminal portion of the GPIHBP1 and Heparin binding domain and C-terminal Lipid Binding domain.
	Yes [61]

	Missense
	c.655G>C
	p.Ala219Pro
	VUS
	Unknown
	Yes [62]

	Missense
	c.659G>T
	p.Ser220Ile
	VUS
	Unknown
	Yes [20]

	Missense
	c.665C>T
	p.Ala222Val
	VUS
	Unknown
	Yes [21]

	Missense
	c.667C>T
	p.Arg223Cys
	VUS
	Unknown
	Yes [20]

	Nonsense
	c.685C>T
	p.Gln229Term
	Likely Pathogenic
	Nonsense SNP produces mRNA that encodes truncated protein due to premature stop codon. ~37% of the protein is eliminated which eliminates a portion of the GPIHBP1/Heparin binding domain and also eliminates the C-terminal lipid binding domain.
	No (reported in LOVD3 only)

	Missense
	c.694C>T
	p.Ser232Pro
	VUS
	Unknown
	Yes [63]

	Small Deletion
	c.694_705del12
	p.Ser232_Leu235del
	Likely pathogenic
	Impaired binding to immobilized heparin due to slower association, somewhat defective sortilin interaction and complete SorLA/LR11 binding deficiency.
	Yes [31]

	Missense
	c.697C>T
	p.Arg233Trp
	VUS
	Unknown
	Yes [21]

	Small Deletion
	c.724delC
	p.Leu242Cysfs*55
	Likely Pathogenic
	Deletion alters reading frame resulting in mRNA encoding truncated protein. ~18% of protein is lost, leading to loss of C-terminal portion of the GPIHBP1/Heparin binding domain and C-terminal Lipid Binding domain.
	Yes [22]

	Missense
	c.725T>C
	p.Leu242Pro
	VUS
	Unknown. Was found in hyperchylomicronemia proband but its involvement is unclear.
	Yes [29]

	Missense
	c.733C>T
	p.Arg245Cys
	VUS
	Unknown
	Yes [21]

	Missense
	c.756G>C
	p.Gln252His
	VUS
	Unknown
	Yes [22]

	Missense
	c.758T>C
	p.Leu253Pro
	Likely pathogenic
	Decreased liposome binding, almost completely deficient in sortilin and SorLA/LR11 binding, and finally variant potently inhibits LPL activity.
	Yes [8,14,31,37]

	Missense
	c.763G>A
	p.Glu255Lys
	VUS
	Unknown
	Yes [21,22]

	Missense
	c.764A>G
	p.Glu255Gly
	Benign
	Unknown. There is some evidence that it has some reduced ability to enhance LPL but allele frequency is too high for what is expected of disorder according to gnomAD (0693%) and has been observed in homozygous state in population databases more than is expected for disease.
	Yes [64]

	Nonsense
	c.775A>T
	p.Arg259Term
	Likely Pathogenic
	Nonsense SNP produces mRNA that encodes truncated protein due to premature stop codon. ~30% of the protein is eliminated which eliminates a portion of the GPIHBP1/Heparin binding domain and eliminates the C-terminal lipid binding domain.
	No (reported in ClinVar only)

	Small Deletion
	c.795del
	p.Thr266Leufs*31
	Likely Pathogenic
	Deletion alters reading frame resulting in mRNA encoding truncated protein leading to loss of C-terminal portion of the GPIHBP1/Heparin binding domain and C-terminal Lipid Binding domain.
	No (reported in ClinVar only)

	Missense
	c.811G>T
	p.Gly271Cys
	VUS
	Forms dimers and multimers due to formation of disulfide bonds at this position being available. This variant does not bind LDL-family receptors, LR8 or LRP1. Does not seem to impact LPL activity directly.
	Yes [64]

	Missense
	c.815C>A
	p.Pro272Gln
	VUS
	Unknown
	Yes [21]

	Nonsense
	c.823C>T
	p.Gln275Term
	Likely Pathogenic
	Nonsense SNP produces mRNA that encodes truncated protein due to premature stop codon. ~25% of the protein is eliminated which eliminates a portion of the GPIHBP1/Heparin binding domain and eliminates the C-terminal lipid binding domain.
	Yes [8,32,65-69]

	Missense
	c.830T>C
	p.Leu277Pro
	VUS
	Unknown
	Yes [8,21,36]

	Missense
	c.844C>A
	p.Arg282Ser
	VUS
	Associated with a reduction in TG levels and serum APOAV levels.
	Yes [8,70]

	Missense
	c.844C>T
	p.Arg282Cys
	VUS
	Unknown
	Yes [21]

	Nonsense
	c.847C>T
	p.Gln283Term
	Likely Pathogenic
	Nonsense SNP produces mRNA that encodes truncated protein due to premature stop codon. ~20% of the protein is eliminated which eliminates a portion of the GPIHBP1/Heparin binding domain and eliminates the C-terminal lipid binding domain.
	No (reported in ClinVar only)

	Missense
	c.875C>T
	p.Thr292Ile
	VUS
	Unknown
	Yes [8,21]

	Nonsense
	c.883C>T
	p.Gln295Term
	Likely Pathogenic
	Nonsense SNP produces mRNA that encodes truncated protein due to premature stop codon. ~20% of the protein is eliminated which eliminates a portion of the GPIHBP1/Heparin binding domain and eliminates the C-terminal lipid binding domain.
	Yes [8,21,22,46]

	Missense
	c.887T>G
	p.Ile296Arg
	VUS
	Unknown
	Yes [8,61]

	Small Deletion
	c.888delA
	p.Ile296Metfs*42
	Likely Pathogenic
	Deletion alters reading frame resulting in mRNA encoding truncated protein. Disrupts the C-terminal lipid binding domain.
	Yes [8]

	Missense
	c.902G>C
	p.Arg301Pro
	VUS
	Unknown
	Yes [22]

	Nonsense
	c.913C>T
	p.Gln305Term
	Likely Pathogenic
	Nonsense SNP produces mRNA that encodes truncated protein due to premature stop codon. C-terminal lipid binding domain is disrupted.
	Yes [27]

	Small Deletion
	c.926_928delAGG
	p.Glu309del
	VUS
	Unknown
	Yes [22]

	Nonsense
	c.937C>T
	p.Gln313Term
	Likely Pathogenic
	Nonsense SNP produces mRNA that encodes truncated protein due to premature stop codon. C-terminal lipid binding domain is disrupted.
	Yes [21,71]

	Missense
	c.941T>G
	p.Leu314Arg
	VUS
	Unknown
	Yes [22]

	Missense
	c.944C>T
	p.Ala315Val
	VUS
	[bookmark: _GoBack]Unknown but evidence currently suggests that in isolation this variant is not pathogenic but since it has increased frequency in HTG patient population, it may interact with other variants to cause HTG.
	Yes [8,21,36,72]

	Missense
	c.956C>T
	p.Pro319Leu
	VUS
	Unknown
	Yes [21]

	Missense
	c.962A>T
	p.His321Leu
	Benign
	Unknown but is considered benign since it has been reported in the homozygous state in population databases more than is expected for disease-causing variant (gnomAD homozygous count is 4 individuals)
	Yes [21,64]

	Missense
	c.972C>G
	p.Phe324Leu
	VUS
	Unknown
	Yes [36]

	Small Deletion
	c.980_981delAG
	p.Glu327Valfs*19
	Likely Pathogenic
	Deletion alters reading frame resulting in mRNA encoding truncated protein. Disrupts the C-terminal lipid binding domain.
	Yes [22]

	Small Deletion
	c.990_993delAACA
	p.Asp332Valfs*5
	Likely Pathogenic
	Deletion alters reading frame resulting in mRNA encoding truncated protein. Disrupts the C-terminal lipid binding domain.
	Yes [8,18,20,31,32,50]

	Small Deletion
	c.995_998delACAG
	p.Asp332Valfs*5
	Likely Pathogenic
	Deletion alters reading frame resulting in mRNA encoding truncated protein. Disrupts the C-terminal lipid binding domain.
	Yes [27]

	Gross Insertion
	c.999insGGCAAGG
TTGTGAGCAAGCT
GCAGGCCC
	p.Ser333Argfs*5
	Likely pathogenic
	Large insertion alters reading frame resulting in mRNA encoding truncated protein. Disrupts the C-terminal lipid binding domain.
	Yes [22]

	Missense
	c.1001G>T
	p.Gly334Val
	Likely Benign
	Unknown. Benign as this variant has been observed in homozygous state in gnomAD population database.
	Yes [21]

	Missense
	c.1027C>T
	p.Arg343Cys
	VUS
	Unknown. Interestingly, even in the homozygous state, this variant does not seem to impact LPL activity.
	Yes [21,40,46]

	Missense
	c.1036G>C
	p.Asp346His
	VUS
	Unknown
	Yes [8]

	Nonsense
	c.1044G>A
	p.Trp348Term
	Likely Pathogenic
	Nonsense SNP produces mRNA that encodes truncated protein due to premature stop codon. C-terminal lipid binding domain is disrupted.
	No (reported in ClinVar only)

	Missense
	c.1088T>A
	p.Leu363Gln
	VUS
	Unknown
	Yes[21]

	Regulatory
	c.*158T>C
	N/A
	Likely Benign
	Creates a functional miRNA (miR-485-5p) binding site in the 3’ UTR of the APOA5 gene, which enables miRNA-mediated degradation of the mRNA, thereby reducing allele expression. Does not seem to be pathogenic in isolation. Component of APOA5*2 haplotype.
	Yes [26,73,74,75]


a For frameshift variants resulting in premature stop codon, the notation “fs*(number)” indicates that the frameshift variant results in stop codon at the position (number) residues downstream of the variant site.
b N/A = Not Applicable
c VUS = Variant of Uncertain Significance
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