Appendix 1

Let us assume that the weights on sensitivity and specificity sum to one, i.e. k and (1-k), where 0 < k <1. If this is not the case, we can divide k by their sum and normalize. 

We are interested in finding c that maximizes 
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or equivalently
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where G and F are cumulative distribution functions.  

This yields the solution 
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Since, multiple solutions may exist (i.e. when (2x ( (2y), only the optimal cut-point c satisfies the condition that 
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For equal weight (k = 0.5), the optimal cut-point is at the intersection between the two distributions (f (c) = g (c)) and is subject to 
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 which guaranties that J would be a global maximum.
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