Appendix 1

Let us assume that the weights on sensitivity and specificity sum to one, i.e. k and ($1-k$), where $0<k<1$. If this is not the case, we can divide k by their sum and normalize.

We are interested in finding c that maximizes

$$
k \operatorname{Pr} o b(X>c)+(1-k) \operatorname{Pr} o b(Y<c)
$$

or equivalently

$$
k(1-G(c))+(1-k) F(c)
$$

where G and F are cumulative distribution functions.
This yields the solution

$$
\frac{f(c)}{g(c)}=\frac{k}{(1-k)}
$$

Since, multiple solutions may exist (i.e. when $\sigma^{2}{ }_{x} \neq \sigma^{2}{ }_{y}$), only the optimal cut-point c satisfies the condition that

$$
f^{\prime}(c)<\left(\frac{k}{(1-k)}\right) * g^{\prime}(c) .
$$

For equal weight $(k=0.5)$, the optimal cut-point is at the intersection between the two distributions $(f(c)=g(c))$ and is subject to $f^{\prime}(c)<g^{\prime}(c)$. which guaranties that J would be a global maximum.

