
Appendix 1 

Let us assume that the weights on sensitivity and specificity sum to one, i.e. k and (1-k), 

where 0 < k <1. If this is not the case, we can divide k by their sum and normalize.  

We are interested in finding c that maximizes  
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or equivalently 
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where G and F are cumulative distribution functions.   

This yields the solution  
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Since, multiple solutions may exist (i.e. when σ2
x ≠ σ2

y), only the optimal cut-point c 

satisfies the condition that  
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For equal weight (k = 0.5), the optimal cut-point is at the intersection between the 

two distributions (f (c) = g (c)) and is subject to ( ) ( ).'' cgcf <  which guaranties that J 

would be a global maximum. 


