Appendix 2 – Computation of Bayesian P-value and the deviance information criterion

A2.1.Multinomial model

Assume that the cell frequencies ri (i=1, …, k), based on N subjects, follow a multinomial distribution, namely:


ri ( Mult((1, (, (k; N).

(i=1, …, k)

The cell probabilities (i (i=1, …, k) can depend on q parameters (j (j=1, …, q), i.e. (i = (i((1, …, (q). The parameters are classically estimated by maximum likelihood yielding the maximum likelihood estimate (MLE) of (j denoted as 
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, which gives also the MLE of (i denoted as
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. Typically q < (k-1), when q = (k-1) then the model is called saturated and if the (-parameters are 1-1 to the (-parameters, then the MLE of (i is ri/N (i=1, …, k). When q > (k-1) the model is called “overspecified” such that the parameters are actually unidentifiable. In this paper we are dealing with a 2h contingency table, hence k = 2h – 1 but the parameters are the cell probabilities belonging to the 2(h+1) – contingency table implying q = 2(h+1) – 1 > k-1. The same is true, say for h = 4, when the parameters are (1 to (31 of Appendix 1. Hence, we are dealing in this paper with an overspecified multinomial model.

In general, the fit of the estimated multinomial model to the data can be measured by the deviance30 given by 
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, whereby the second term in the expression represents the perfect fit of the model to the data. 

A2.2.Bayesian P-value

It is illustrative to see what the deviance would be if we sampled (pseudo-)data under the actually fitted model, i.e. if we randomly generated ‘observations’ using the current model. If the observed data are obtained from the fitted model and we would repeatedly sample such pseudo observations, then the average of 
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 = devo-devr, the difference of the deviance of the sampled pseudo-data (devr) with the deviance of the observed data (devo) would be about zero. A positive value for 
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 indicates that the fit of the model to the observed data is worse than the fit of the model to the pseudo-data generated under that same model. 

In a MCMC context (at convergence) 
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can be calculated at each iteration based the current sampled value of the parameter estimates (j (j=1, …, q) yielding a chain 
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T. The average 
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, whereby I (x) =1 when x ( 0 and 0 otherwise, yields the posterior estimate of P(
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 > 0). The difference 
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 is called a posterior predictive check.17 (The estimate of) P(
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> 0) is called a Bayesian P-value and expresses the fit of the assumed model to the data, i.e. when small the assumed model is probably not appropriate for the data at hand. 

A2.3.Deviance Information Criterion

Akaike’s Information Criterion (AIC) for a multinomial model is given by 
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where p is the the number of parameters that are estimated. A low value for AIC indicates a good fit of the model to the data after having penalized for the number of parameters that are estimated. Hence, a complicated model (high value of p) needs to give a real improvement of the fit to result in a lower AIC. In this way AIC can be used to select models. The deviance information criterion (DIC)16 is a generalisation of AIC to a Bayesian setting where p is replaced by the Bayesian equivalent, namely pD and 
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 in the first term is replaced by a Bayesian estimate (e.g. posterior mean). Since 
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,16 where the first part of the expression is the posterior mean of (2 x minus) log-likelihood, DIC can be rewritten as 
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. A model with a small DIC has the same property as AIC but in a Bayesian context. However, it is important to stress that “a model” is now the combination of the data (likelihood) and the prior information (prior distribution) yielding a posterior distribution. Thus a correct likelihood with a “wrong” prior distribution will yield bad predictions and this will be indicated by a high value for DIC. Observe that, if an MCMC approach is used, DIC should be calculated after convergence. A condition for DIC to be a reliable measure as well as for pD is that the likelihood is log-concave in its parameters 16, 18 when for the Bayesian estimate the posterior mean is chosen. Further, the posterior mean needs to be a good summary measure for the parameters (i.e. the posterior distributions need to be fairly symmetric). When log-concavity is not satisfied, pD can become negative and also the estimate for DIC is not trustworthy. 

A2.4.Comparison between the two measures

The principal difference between the above defined Bayesian P-value (depending on 
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 and DIC is that the deviance information criterion penalizes for the number of parameters required to be estimated in the model.
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