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1.  Use of negative control outcomes to detect uncontrolled confounding 
 
We briefly provide an analytical basis for the use of an ideal U-comparable 
negative control outcome to detect the presence of uncontrolled confounding.  
For the sake of simplicity, we limit our treatment to mean regression with identity 
link function, where confounding adjustment is done by conditioning on potential 
confounders in the model, and we provide details only for the case of 
dichotomous ( , )A U . Nonetheless, with additional technical arguments, our 
results can be generalized to other types of regression models, and to settings 
with continuous ( , )A U . 
 
The fact that A has no effect on the mean of N within levels of L and U implies 
that E(N|A,U,L)=E(N|U,L).  Thus, marginalizing over U given A and L, we obtain 
the following expression 

( | , ) [ ( | , , ) | , ] [ ( | , ) | , ]E N A L E E N U A L A L E E N U L A L= =  
 In the case of dichotomous A and U, this result immediately leads to the following 
simple and intuitive expression for the confounded conditional effect of A on Nfor 
each level of L,  
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= = − = × = − =
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This formula confirms that in the absence of uncontrolled confounding,Δ =( ) 0L  
for all values of L.  This is because under the assumption of no uncontrolled 
confounding, any random variable U not in (L,A,Y) either is independent of N 
given L, making = − = =( | 1, ) ( | 0, ) 0E N U L E N U L ,  or is independent of A given 
L, making = − = =( | 1, ) ( , 0, ) 0E U A L E U A L . However, in the presence of 
uncontrolled confounding, we can generally expect that Δ ≠( 0)L for some value 
of L. 
 
The above observation leads to the following general strategy to detect the 
presence of uncontrolled confounding by testing the null hypothesis: Δ =( ) 0L   for 
all values of L.  In practice, as L may contain 2 or more continuous components, 
or multiple categorical variables,   this is achieved by fitting a regression model 

( | , ),E N A L θ )with unknown parameter θ , for the mean of N given covariates A 



and L; and subsequently testing for a significant effect of A in this model. For 
instance, in the simple case where one correctly specifies the model 

θ θ θ θ= +++0 1 2 3)( | , , ' 'E N A L LA LAθ  where = 1 2( ', ')'L L L  and θ θ θ θ= 0 1 2 3[ , ',, '] 'θ , a 
test for the presence of uncontrolled confounding thus involves a standard 
statistical test of the null hypothesis of zero values for the coefficients for the 
regression of N  on A ,i.e. a test that θ1  and θ2  are both zero.  We note that none 
of the above arguments require any additional restriction on the relationship 
between U and L, which can generally be dependent. Furthermore, the usual 
modeling caveats equally apply to this situation, in particular, the validity of the 
proposed test is reliant on the analyst’s ability to appropriately account for 
measured confounders L; a misspecified model ( | , ),E N A L θ  will often lead to 
incorrect conclusions about the presence of uncontrolled confounding. 
 
 
eAppendix2.Use of Negative control exposures to detect uncontrolled 
confounding. 
 
In the case of an ideal U-comparable negative control exposure, knowledge that 
B does not affect the mean of Y within levels of A,L and U implies that 

=( | , , , ) ( | , , )E Y A B U L E Y A U L .  Thus, upon marginalizing over U given B,A and L, 
we obtain =( | , , ) [ ( | , , ) | , , ]E Y B A L E E Y A U L B A L  .  When B and U are binary, this 
expression provides a simple and intuitive formula for the confounded conditional 
effect of B on Y: 
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Thus, similar to our result for negative control outcomes, in the presence of 
uncontrolled confounding, we expect that δ ≠( , 0)L A  for some joint level of A and 
L.   A test for uncontrolled confounding is thus a test of the null hypothesis 
δ =( , 0)L A  for all values of A and L. This is easily operationalized by regressing Y 
on A,L and B in a parametric mean regression model, and subsequently 
performing a standard statistical test for the effect of B on Y given A and L in the 
model.  
 
eAppendix3. A remark on the use of negative control variables to infer the 
direction and magnitude of confounding bias.  
 
In the event that the null hypothesis of no uncontrolled confounding is correctly 
rejected (i.e. Δ ≠( 0)L for some value of L, or δ ≠( , 0)L A for some value of A and 
L) , an interesting question arises: can the magnitude and/or the direction of 
confounding bias of an estimate of the conditional effect of A on Y, be inferred 
from an estimate of Δ( )L , the regression of the negative control outcome on the 
exposure of interest, orδ ( , )L A , the regression of the outcome of interest on the 
negative control exposure?  As we now argue, this is generally impossible, 
unless additional assumptions are made beyond those stated so far.   



 
To illustrate this point, consider the case where a researcher identifies an ideal 
U-comparable negative control outcome N; furthermore,  suppose that the data 
were generated by a process described by the model 

β β β β= ++ +0 1 2 3( | , , ; ') AE Y A L U L Uβ  for the mean of Y given A,L and U, where 
β β β β= 0 1 2 3, )',( ,β , so that β1 encodes the unknown conditional causal effect of A 

on Y. Now, because U is not observed, suppose the analyst fits the reduced 
model that specifies β =3 0 to data Y,A and L. Then, by standard linear 
regression theory, the least-squares estimate of the effect of A in this reduced 
model can be shown to converge in probability (with increasing sample size) to 
the quantity β π β+3 1, where π  denotes the asymptotic value of the least-squares 
estimate of the effect of A in a (possibly incorrect) linear regression of U on A and 
L. Therefore, the product  quantifies the asymptotic bias of the ordinary least-
squares estimate of the effect of A on Y due to uncontrolled confounding.   
 
Next,  suppose that in order to detect the presence of confounding bias, the 
analyst uses the regression model given in section 1 of this Appendix, 

θ θ θ+ += 0 1 3( | , ), 'E AN A L Lθ  of the negative control outcome on A and L, where 
for simplicity, we set θ2=0.  When this latter model is correct,as previously 
established, the confounded effect of Aon N within levels of L equals 

1( ) [ ( | 1, ) ( | 0, )] [ ( | 1, ) ( | 0, )]L E N U L E N U L E U A L E U A L θΔ = = − = × = − = = .  
Therefore, we see that, although the formulae for the confounding bias θ1  and 
β π3  in estimating the effect of Aon N and the effect of A on Y respectively,are 
both a product of two terms, there is a priori no reason why these two 
expressions should be equal unless one is willing to make additional 
assumptions.   
 
For instance, the equality θ β π=1 3  would indeed hold if the following two 
assumpions were met: 
 
1) the mean function ( | , )E U A L  is in the linear span of A and L, and  
2) within levels of A and L, the effect of U on N is equal to the effect of U on Y, 
i.e. 

 
= − =
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This is because the first assumption implies that 
( | 1, ) ( | 0, )E U A L E U A Lπ = = − =  when the mean of U depends linearly on A and 

L, whereas the second assumption states that the magnitude of the association 
between U and N is equal to that between U and 
Y,i.e 3 ( | 1, ) ( | 0, )E N U L E N U Lβ = = − = .  By combining 1) and 2), we obtain 
θ β π=1 3 .  Clearly, both of these assumptions are empirically untestable as they 



directly involve the uncontrolled confounder and would generally be unrealistic 
unless they are based on very firm scientific understanding. 
 
In summary, the regression results for a negative control outcome or a negative 
control exposure cannot be used in a simple way to “correct” the equivalent 
regressions for the outcome of interest or the exposure of interest, respectively, 
even in the simple linear setting considered here.   
 
Nonetheless, upon rejecting the hypothesis of no uncontrolled confounding, the 
results of negative controls can be additionally informative in some simple 
settings without the need for potentially unrealistic assumptions.  To illustrate, 
suppose that there is no L, so that a sample of independent and identically 
distributed data on Y,A,U is generated,where A and U can either be discrete or 
continuous. However data on U are not observed, and the following models hold: 
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where ρ ρ= 0 1( , );ρ  
η η= +0 1( | ; )E B U Uη , where η η= 0 1( , )η , and ρ1, η1 and β3 are bounded away from 

zero, so that U confounds both the null association between  A and Y and the 
association of B with Y. In this simple setting, when U is unobserved, the 
asymptotic bias of the least-squares estimate β
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1 of the marginal effect of A on Y, 
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. When A and U are continuous, 

the fraction λ−1  can be interpreted as the proportion of the variance of A due to 
the effect ofU on the mean ofA; if λ =−1 0   there is no uncontrolled confounding 
and thus there is no corresponding bias, whereas, as the association between U 
and the mean of A explains an increasing proportion of the variance of A, λ−1  
tends to 1 and the worst-case confounding bias corresponds to the limiting value 
β
ρ

3

1

.  As λ  directly involves the variance of U, there is generally no hope of 

estimating it from the observed data.   However, as we show next, appropriate 
use of the negative control exposure B permits identification of the sign of the 
bias ofβ

)
1  with no further assumption required.  Specifically, consider the statistic 
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agrees with the sign of β λ
ρ

−3
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(1 ) ; thus in large samples, we can expect the sign of 



β− 1̂T  to generally agree with the sign of the bias of the least-squares estimator 
of the effect of A on Y.  Formally, this is true with probability tending to one. 
Furthermore, it is interesting to note that for an assumed value of λ , one obtains 

the following bias corrected least-squares estimator ββ λ
λ
−

= −
)

% 1
1 )( TT .  In 

principle, this opens up the possibility of performinga simple sensitivity analysis 
by varying λ to assess the potential impact of the magnitude of uncontrolled 
confounding on the corrected least-squares estimator β λ%

1( ) . 
The above discussion did not allow for the presence of observed confounders L. 
Nonetheless, the results generalize quite naturally if confounding adjustment is 
done by stratification. However, no similar results are currently available for 
situations where confounding adjustment is performed either by conditioning in 
the model or by inverse-probability weighting.    
  
We finally provide technical arguments supporting our results. First, to derive the 
large sample bias ofβ
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β β β= − + +, 0 1 3( )y i i i iY A Uò , and the overbar denotes the sample average.  The 

third term in the above expression for β
)
1  converges to zero in probability with 

increasing sample size, whereas the second term, which constitutes the bias of 
least-squares –  
 

ρ
β β ρ β

− − − −

−
= +

− −
∑ ∑ ∑
∑ ∑ ∑

1
3 3 1 3

) )( ( ( ( )
)(

)
()()

i ii i i i i i i

i i i i i i

i

i i i

U A U U U A U
A A

U U U
A A A A A AA

-- 

 

converges in probability to β βρ λ
ρ ρ

= −
2

3 31

1 1

var( ) (1
va )

)
r(

U
A

, where we use the fact that 

ρ−

−

−∑
∑

1)( )
)

(
(

i i i

i

i

i i

U A U
A

U
A A

 converges in probability to − −
=

−
([ ( )][ ( | )]) 0

([ ( )] )
E U E U A E A U

E A E A A
.  
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where the third term converges to zero in probability, and the second term can be 
written: 
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The second term in this last equation is easily shown to converge to zero in 
probability by an application of the law of large numbers, whereas the first term 
converges in probability to the desired quantity.     


