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eAppendix 

1. Stochastic SEIR Transmission Model Implementation 

 A sample outbreak is initialized by creating 153 households, with sizes hi, drawn 

from the census distribution of household sizes. The initial household state is set to 

, indicating that only the index case is symptomatic, all other 

household members being susceptible. The transmission model is summarized in the 

algorithm below, where S, E, I and R are the number of individuals in each state and the 

model is initialized at t=0: 

 

 

The model is stepped forward in hourly increments ( ), which gives a reasonable 

approximation of a continuous time infection process.  Rates are expressed in terms of 

days but scaled to the appropriate time step.  

The incubation and infectious periods are conceptualized as a sequence of  and 

 second-order compartments, with the probability of transition between these 

compartments for each individual equal to  and  . This process yields 

 and  transition rates that are gamma distributed with means  and shape 

If E + I > 0: 
 For s in S: 
  Draw x from Uniform(0,1] 
  If x <= : 
   S = S – 1 
   E = E + 1 
   Draw symptom onset time from  
   Draw recovery time from  
 t = t + dt 
 
At end of step, transition from  and  those who have 
symptom onset or recovery time <= t 

eAlgorithm 1 
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parameters , respectively. Transmission rates are also scaled in terms of  (see 

Equation 1). 

 

2. Asymptomatic Infections 

To assess the effect of unobserved asymptomatic infections, we implemented the 

stochastic SEIR model outlined above, with an additional parameter, , that controls the 

proportion of new infections that are asymptomatic: 

 

Asymptomatic infections are, in this simplified model, immediately moved to the 

immune class. This is because they are significantly less infectious than symptomatic 

infections, e.g., (10), and can be expected to generate cases on a longer timescale than our 

window of observation (9 days). Although they are unlikely to contribute significantly to 

observed within-household transmission dynamics, we expect that they are important to 

If E + I > 0: 
 For s in S: 
  Draw x from Uniform(0,1] 
  If x <= : 
   Draw y from Uniform(0,1] 
   If y <= : 
      S = S – 1 
    R = R + 1 
   Else: 
    S = S – 1 
    E = E + 1 
    Draw symptom onset time from  
    Draw recovery time from  
 

t = t + dt 
  
At end of step, transition from  and  those who have symptom 
onset or recovery time <= t 

eAlgorithm 2 
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the community-level persistence of norovirus and, as such, need to be accounted for in 

the estimate of rate of transmission. In this context, then, asymptomatic cases can be 

thought of as censored data that bias our estimate of the force of infection. 

When simulating outbreaks, we fix the background infection rate and the 

distribution of the incubation and infectious periods,( α = 0.001, = 1.7 days,  = 4.0, 

= 1.14 days, = 1.0) and allow the transmission parameter, , and proportion of 

asymptomatic infections, , to vary. We then sample all 126 parameter combinations 

from  = {.10, .11, … ,0.30} and  = {0, 0.1, 0.2, 0.3, 0.4, 0.5}.  We draw 20 stochastic 

realizations of each parameter set and estimate the mean ML value of  (i.e., average 

over the 20 runs) for each ( , ) combination, as though  = 0. This gives a predicted 

value of  for each level of . Starting from our ML estimate of 0.14 for  when  = 0, 

the predicted value of  increases linearly by 0.035 units for each 10% for increase in  

(Figure 8).  

We test the sensitivity of these results to the assumption that asymptomatic 

individuals do not contribute to household transmission by allowing asymptomatic 

infections to be 10% as infectious as symptomatic ones. We find broadly similar results, 

with the predicted value of  increasing linearly by 0.028 units for each 10% increase in 

 (eFigure 1). 
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eFigure 1. Relationship of proportion asymptomatic to expected value of  when asymptomatic 
infections are 10% as infectious as symptomatic infections. 

 

3. Missing Household Sizes 

 Since all households in our dataset consist of two or more people, the minimum 

household size, h, is 2. We start with the empirical distribution of household sizes from a 

1990 census of household sizes in Sweden (see eTable), denoted as C, where C(h) is the 

probability of observing a household of size h in the total population . 

If the minimum possible number of individuals, i.e., the number of infections 

observed in a household, ,  is less than or equal to 2, the entire empirical distribution 

is used to sample a household size.  If , the number of cases observed is set as the 

minimum household size, with values smaller than  assigned a density of zero. We 
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assume that the case data provide no additional information on the distribution of the 

remaining household sizes, so the remaining sizes on the interval  are 

assigned a uniform density.   

This information is combined with the census data in the top row of eTable for 

each size to generate a distribution from which we can sample household sizes for h ≥ 

: 

 

eEquation  
 

In order to sample random variates from this distribution, we compute the conditional 

CDF of the household size distribution and draw a random number on the interval (0,1], 

and select the smallest value of h where the CDF is less than equal to the random number. 

The second row of eTable shows the probability distribution resulting from this 

sampling procedure. We find that the expected household size increases slightly from 

3.73 to 3.87 individuals, with most of this change accounted for by a decrease in the 

density of households of size 2 to slightly larger ones.  

 

# Household Members  
2 3 4 5 6 7 8 9 10 

Census Density 0.325 0.193 0.248 0.108 0.027 0.041 0.024 0.017 0.017 

Sampled Density 0.283 0.192 0.265 0.115 0.031 0.047 0.027 0.018 0.019 
 eTable. Empirical Probability Distribution of Household Sizes 
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4. Model Validation 

 In order to validate the SEIR model used for simulation and parameter estimation, 

we performed additional simulation analysis using a Gillespie1 algorithm-based 

implementation of the model described in eAlgorithm 1, which is an exact, continuous-

time simulation of the transmission model.  

In each simulation, there are 153 households, the sizes of which are drawn from 

C, the empirical distribution of household sizes. At t=0, each household has a single 

index case. Model parameters are the same as those obtained from our statistical analysis 

(  = 0.14, =1.17 days, γs  = 1.0). For each of 1000 simulations, we record the number 

of households with no secondary cases, i.e., where there is stochastic die-out, and the 

average number of cases in households with secondary cases. 

We find that our simulation results are in good agreement with the Stockholm 

data for both outbreak size (Simulated mean = 1.9 cases, SD = .2, vs. 1.6 for Stockholm 

data; eFigure 2) and the number of simulated households in which there are no secondary 

cases (Simulated mean = 110.5 households, SD = 5.5 vs. 104 households for Stockholm 

data; eFigure 3). 
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eFigure  2. Histogram of average number of secondary cases in simulated household outbreaks. 

 

eFigure  3. Histogram of number of households with no secondary cases. 
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5. Computational Details  

Data augmentation software was implemented in C++ and Python 2.6 using 

Boost.Python and the Numpy and Scipy numerical and scientific computing libraries. 

Plots were generated with Matplotlib 0.98 graphing and plotting tools for Python. All 

diagrams were created in Inkscape 0.47. 

All results presented here come from 104 independent samples for each parameter 

combination.  
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