
eAppendix for "Bias formulas for sensitivity analysis of unmeasured
confounding for general outcomes, treatments and confounders"

1. Causal diagrams and the causal interpretation of sensitivity parameters

Each of the bias formulas given in Theorem 1 make use of expressions of the form E(Y ja; x; u)�E(Y ja; x; u0).

Such expression can sometimes, but not always, be interpreted causally. Note that the expression E(Y ja; x; u)�

E(Y ja; x; u0) cannot be interpreted as the total e¤ect of U on Y since the expression E(Y ja; x; u)�E(Y ja; x; u0)

is conditional on A, and here U is a cause of A; we are thus conditioning on a variable, namely A, that is on the

causal pathway from U to Y . Let Yua denote the counterfactual value of Y if, possibly contrary to fact, U were

set to u and A were set to a. To interpret E(Y ja; x; u)�E(Y ja; x; u0) as a controlled direct e¤ect two conditions

are needed. The �rst condition is that the e¤ect of U on Y is unconfounded given X, i.e. that Yua
a
U jX. The

second condition is that Yua
a
AjX;U ; note that this second condition Yua

a
AjX;U is slightly di¤erent than

the condition assumed throughout the paper that Ya
a
AjX;U . If both of these conditions hold, Yua

a
U jX

and Yua
a
AjX;U then E(Y ja; x; u)� E(Y ja; x; u0) can be interpreted, within strata X = x, as the controlled

direct e¤ect of U on Y with A set to a.33 In other words, if we have both Yua
a
U jX and Yua

a
AjX;U then

E(Y ja; x; u)�E(Y ja; x; u0) is the e¤ect of U on Y not mediated through A. Causal directed acyclic graphs can

be helpful in clarifying whether these additional conditions hold.33 Graphically, on a causal directed acyclic

graph we will have that Yua
a
U jX if all backdoor paths from U to Y are blocked by X and we will have

that Yua
a
AjX;U if all backdoor paths from A to Y are blocked by (X;U). See Pearl33 for the de�nition of

blocked paths and further discussion of the rules concerning causal directed acyclic graphs and the identi�cation

of causal e¤ects.

The condition that Yua
a
U jX (i.e. that the e¤ect of U on Y is unconfounded given X) will not always

hold; the condition is not implied by the e¤ect of A on Y being unconfounded given (X;U). Figure 1 below

gives an example in which the e¤ect of U on Y is unconfounded given X.

X

U

A Y

Fig. 1. Causal DAG in which the e¤ect of U on Y is unconfounded given X.

Figure 2 below gives an example in which the e¤ect of U on Y is not unconfounded given X.
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Fig. 2. Causal DAG in which the e¤ect of U on Y is not unconfounded given X but in which the e¤ect of A on

Y in unconfounded given (X,U).

In Figure 2, suppose that data is available for neither W nor U . On the causal directed acyclic graph given in

Figure 2 it is the case that the e¤ect of A on Y is unconfounded given (X;U); control need not be made for W ;

the set (X;U) blocks all backdoor paths from A to Y . There is, however, an unblocked backdoor path from U

to Y (throughW ) and thus the e¤ect of the e¤ect of U on Y is not unconfounded given X (although it would be

unconfounded given (X;W )). Although the sensitivity analysis and external adjustment procedures described

in section 3 could still be used by considering only U and ignoring W (since Ya
a
AjX;U), the expression

E(Y ja; x; u)�E(Y ja; x; u0) cannot be interpreted as a causal direct e¤ect. However, as noted in the paper, the

expression E(Y ja; x; u)� E(Y ja; x; u0) need not have a causal interpretation to be used in sensitivity analysis.

If U is a cause of some of the variables in X as in the causal directed acyclic graph given in Figure 3 then

the e¤ect of U on Y will not unconfounded given X because some variables in X are on the pathway from U to

Y ; we will not have Yu
a
U jX; and E(Y ja; x; u)� E(Y ja; x; u0) cannot be interpreted as the controlled direct

e¤ect of U on Y with A set to a.

X2

U

A Y

X1

Fig. 3. Causal DAG in which U is a cause of some subset of X.

If, however, X can be partitioned into two sets, X1 and X2, so that Yux2a
a
U jX1 and Yux2a

a
X2jX1; U and

Yux2a
a
AjX;U where Yux2a denotes the counterfactual value of Y if, possibly contrary to fact, U were set to

u, X2 were set to x2 and A were set to a, then E(Y ja; x; u) � E(Y ja; x; u0) can be interpreted, within strata

X1 = x1, as the controlled direct e¤ect of U on Y with A set to a and X2 set to x2.33 On a causal directed

acyclic graph the condition Yux2a
a
U jX1 will hold if X1 blocks all backdoor paths from U to Y , the condition

Yux2a
a
X2jX1; U will hold if (X1; U) block all backdoor paths from X2 to Y ; the condition Yux2a

a
AjX;U
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will hold if (X;U) block all backdoor paths from A to Y . Thus for the causal directed acyclic graph given in

Figure 3, E(Y ja; x; u)�E(Y ja; x; u0) can be interpreted as the controlled direct e¤ect of U on Y with A set to

a and X2 set to x2.

2. Bias Formulas for the Marginal and Conditional Odds Ratio

The conditional causal odds ratios in the total population or amongst those receiving treatment a1 or a0 are

de�ned respectively by

E(Ya1 jx)=f1� E(Ya1 jx)g
E(Ya0 jx)=f1� E(Ya0 jx)g
E(Ya1 ja1; x)=f1� E(Ya1 ja1; x)g
E(Ya0 ja1; x)=f1� E(Ya0 ja1; x)g
E(Ya1 ja0; x)=f1� E(Ya1 ja0; x)g
E(Ya0 ja0; x)=f1� E(Ya0 ja0; x)g

:

De�ne the bias expressions dORa+ (x), d
OR
a1 (x) and d

OR
a0 (x) as follows:

dORa+ (x) =
E(Y ja1; x)=f1� E(Y ja1; x)g
E(Y ja0; x)=f1� E(Y ja0; x)g

=
E(Ya1 jx)=f1� E(Ya1 jx)g
E(Ya0 jx)=f1� E(Ya0 jx)g

dORa1 (x) =
E(Y ja1; x)=f1� E(Y ja1; x)g
E(Y ja0; x)=f1� E(Y ja0; x)g

=
E(Ya1 ja1; x)=f1� E(Ya1 ja1; x)g
E(Ya0 ja1; x)=f1� E(Ya0 ja1; x)g

dORa0 (x) =
E(Y ja1; x)=f1� E(Y ja1; x)g
E(Y ja0; x)=f1� E(Y ja0; x)g

=
E(Ya1 ja0; x)=f1� E(Ya1 ja0; x)g
E(Ya0 ja0; x)=f1� E(Ya0 ja0; x)g

.

If the outcome is rare in all strata of a, x and u then the bias formulas for the risk ratio will hold approximately

true for the odds ratio. Under the rare outcome assumption we may also replace risk ratios with odds ratios

and thus if Ya
a
AjX;U and if u0 is any chosen reference value for U then the following formulas will hold

approximately:

dORa+ (x)
�=

P
uf

E(Y ja1;x;u)
1�E(Y ja1;x;u)=

E(Y ja1;x;u0)
1�E(Y ja1;x;u0)gP (uja1; x)P

uf
E(Y ja1;x;u)
1�E(Y ja1;x;u)=

E(Y ja1;x;u0)
1�E(Y ja1;x;u0)gP (ujx)

=

P
uf

E(Y ja0;x;u)
1�E(Y ja0;x;u)=

E(Y ja0;x;u0)
1�E(Y ja0;x;u0)gP (uja0; x)P

uf
E(Y ja0;x;u)
1�E(Y ja0;x;u)=

E(Y ja0;x;u0)
1�E(Y ja0;x;u0)gP (ujx)

dORa1 (x)
�=

P
uf

E(Y ja0;x;u)
1�E(Y ja0;x;u)=

E(Y ja0;x;u0)
1�E(Y ja0;x;u0)gP (uja1; x)P

uf
E(Y ja0;x;u)
1�E(Y ja0;x;u)=

E(Y ja0;x;u0)
1�E(Y ja0;x;u0)gP (uja0; x)

dORa0 (x)
�=

P
uf

E(Y ja1;x;u)
1�E(Y ja1;x;u)=

E(Y ja1;x;u0)
1�E(Y ja1;x;u0)gP (uja1; x)P

uf
E(Y ja1;x;u)
1�E(Y ja1;x;u)=

E(Y ja1;x;u0)
1�E(Y ja1;x;u0)gP (uja0; x)

:

Note that to obtain the approximate bias formulas for the marginal causal odds ratio above, the rare outcome

assumption must be invoked; thus if the rare outcome assumption does not hold, the approximations may deviate

considerably from the true bias formulas. If the outcome is not rare then we can instead use the following exact

result.
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Theorem 4: If Ya
a
AjX;U then

dORa+ (x) =

P
u
E(Y ja1;x;u)P (uja1;x)P

u
f1�E(Y ja1;x;u)gP (uja1;x)P
u
E(Y ja0;x;u)P (uja0;x)P

u
f1�E(Y ja0;x;u)gP (uja0;x)

=

P
u
E(Y ja1;x;u)P (ujx)P

u
f1�E(Y ja1;x;u)gP (ujx)P
u
E(Y ja0;x;u)P (ujx)P

u
f1�E(Y ja0;x;u)gP (ujx)

dORa1 (x) =

P
uE(Y ja0; x; u)P (uja1; x)P

uf1� E(Y ja0; x; u)gP (uja1; x)
=

P
uE(Y ja0; x; u)P (uja0; x)P

uf1� E(Y ja0; x; u)gP (uja0; x)

dORa0 (x) =

P
uE(Y ja1; x; u)P (uja1; x)P

uf1� E(Y ja1; x; u)gP (uja1; x)
=

P
uE(Y ja1; x; u)P (uja0; x)P

uf1� E(Y ja1; x; u)gP (uja0; x)
:

Using these exact expressions in Theorem 4 requires a more involved approach to external adjustment than

using the approximate formulas. The exact approach is more involved because we must specify E(Y ja; x; u) for

each u. We could do so by obtaining E(Y ja; x; u0) for some u0 as well as

E(Y ja; x; u)=f1� E(Y ja; x; u)g
E(Y ja; x; u0)=f1� E(Y ja; x; u0)g

for each u from external information. From these two external quantities, it is then straightforward to obtain

E(Y ja; x; u) for each u. Note that for a particular value x, this exact approach will require one additional

quantity, namely E(Y ja; x; u0) for some u0, as compared with the approximate approach.

The marginal causal odds ratio or "standardized" causal odds ratio in the total population or amongst those

receiving treatment a1 or a0 are de�ned respectively by

E(Ya1)=f1� E(Ya1)g
E(Ya0)=f1� E(Ya0)g
E(Ya1 ja1)=f1� E(Ya1 ja1)g
E(Ya0 ja1)=f1� E(Ya0 ja1)g
E(Ya1 ja0)=f1� E(Ya1 ja0)g
E(Ya0 ja0)=f1� E(Ya0 ja0)g

:

De�ne the bias expressions dORa+ , d
OR
a1 and dORa0 as follows:

dORa+ =

P
xE(Y ja1; x)P (x)=f1�

P
xE(Y ja1; x)P (x)gP

xE(Y ja0; x)P (x)=f1�
P

xE(Y ja0; x)P (x)g
=
E(Ya1)=f1� E(Ya1)g
E(Ya0)=f1� E(Ya0)g

dORa1 =

P
xE(Y ja1; x)P (xja1)=f1�

P
xE(Y ja1; x)P (xja1)gP

xE(Y ja0; x)P (xja1)=f1�
P

xE(Y ja0; x)P (xja1)g
=
E(Ya1 ja1)=f1� E(Ya1 ja1)g
E(Ya0 ja1)=f1� E(Ya0 ja1)g

dORa0 =

P
xE(Y ja1; x)P (xja0)=f1�

P
xE(Y ja1; x)P (xja0)gP

xE(Y ja0; x)P (xja0)=f1�
P

xE(Y ja0; x)P (xja0)g
=
E(Ya1 ja0)=f1� E(Ya1 ja0)g
E(Ya0 ja0)=f1� E(Ya0 ja0)g

.

If the outcome is rare in all strata of a, x and u then the bias formulas for the marginal causal risk ratios will

hold approximately true for the marginal causal odds ratios. Under the rare outcome assumption, we may also

replace risk ratios with odds ratios and thus if Ya
a
AjX;U , and if u0 is any chosen reference value for U , and
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if x0 is any chosen reference value for X, then the following formulas will hold approximately:

dORa+
�=

P
x

E(Y ja1;x)=f1�E(Y ja1;x)g
E(Y ja1;x0)=f1�E(Y ja1;x0)gP (x)P

x r
OR
1 (x)�1 E(Y ja1;x)=f1�E(Y ja1;x)g

E(Y ja1;x0)=f1�E(Y ja1;x0)gP (x)
=

P
x

E(Y ja0;x)=f1�E(Y ja0;x)g
E(Y ja0;x0)=f1�E(Y ja0;x0)gP (x)P

x r
OR
0 (x)�1 E(Y ja0;x)=f1�E(Y ja0;x)g

E(Y ja0;x0)=f1�E(Y ja0;x0)gP (x)

dORa1
�=

P
x d

OR
a1 (x)

E(Y ja0;x)=f1�E(Y ja0;x)g
E(Y ja0;x0)=f1�E(Y ja0;x0)gP (xja1)P

x
E(Y ja0;x)=f1�E(Y ja0;x)g
E(Y ja0;x0)=f1�E(Y ja0;x0)gP (xja1)

dORa0
�=

P
x

E(Y ja1;x)=f1�E(Y ja1;x)g
E(Y ja1;x0)=f1�E(Y ja1;x0)gP (xja0)P

x d
OR
a0 (x)

�1 E(Y ja1;x)=f1�E(Y ja1;x)g
E(Y ja1;x0)=f1�E(Y ja1;x0)gP (xja0)

:

where

rOR1 (x) =

P
u

E(Y ja1;x;u)=f1�E(Y ja1;x;u)g
E(Y ja1;x;u0)=f1�E(Y ja1;x;u0)gP (uja1; x)P
u

E(Y ja1;x;u)=f1�E(Y ja1;x;u)g
E(Y ja1;x;u0)=f1�E(Y ja1;x;u0)gP (ujx)

rOR0 (x) =

P
u

E(Y ja0;x;u)=f1�E(Y ja0;x;u)g
E(Y ja0;x;u0)=f1�E(Y ja0;x;u0)gP (uja0; x)P
u

E(Y ja0;x;u)=f1�E(Y ja0;x;u)g
E(Y ja0;x;u0)=f1�E(Y ja0;x;u0)gP (ujx)

and dORa1 (x) and d
OR
a0 (x) are the bias formulas for the conditional odds ratios given in section 3 of the online

appendix.

The expressions of the form
E(Y ja; x; u)=f1� E(Y ja; x; u)g
E(Y ja; x; u0)=f1� E(Y ja; x; u0)g

and P (uja; x) could be obtained through external information; the expressions of the form

E(Y ja; x)=f1� E(Y ja; x)g
E(Y ja; x0)=f1� E(Y ja; x0)g

can be obtained from the data.

Note that to obtain the approximate bias formulas for the marginal causal odds ratio above, the rare outcome

assumption must be invoked repeatedly; thus if the rare outcome assumption does not hold the approximations

may deviate considerably from the true bias formulas. If the rare outcome assumption does not hold then we

can instead use the following exact result.
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Theorem 5: If Ya
a
AjX;U then

dORa+ =

P
x

P
u
E(Y ja1;x;u)P (uja1;x)P (x)P

x

P
u
f1�E(Y ja1;x;u)gP (uja1;x)P (x)P

x

P
u
E(Y ja0;x;u)P (uja0;x)P (x)P

x

P
u
f1�E(Y ja0;x;u)gP (uja0;x)P (x)

=

P
x

P
u
E(Y ja1;x;u)P (ujx)P (x)P

x

P
u
f1�E(Y ja1;x;u)gP (ujx)P (x)P

x

P
u
E(Y ja0;x;u)P (ujx)P (x)P

x

P
u
f1�E(Y ja0;x;u)gP (ujx)P (x)

dORa1 =

P
x

P
u
E(Y ja0;x;u)P (uja1;x)P (xja1)P

x

P
u
f1�E(Y ja0;x;u)gP (uja1;x)P (xja1)P

x

P
u
E(Y ja0;x;u)P (uja0;x)P (xja1)P

x

P
u
f1�E(Y ja0;x;u)gP (uja0;x)P (xja1)

dORa0 =

P
x

P
u
E(Y ja1;x;u)P (uja1;x)P (xja0)P

x

P
u
f1�E(Y ja1;x;u)gP (uja1;x)P (xja0)P

x

P
u
E(Y ja1;x;u)P (uja0;x)P (xja0)P

x

P
u
f1�E(Y ja1;x;u)gP (uja0;x)P (xja0)

:

Using the exact expression in Theorem 5 requires a more involved approach to external adjustment than using

the approximate formulas. The exact approach is more involved because we must specify every E(Y ja; x; u) for

each x and u. We could do so by obtaining all the odds ratios

E(Y ja; x; u)=f1� E(Y ja; x; u)g
E(Y ja; x; u0)=f1� E(Y ja; x; u0)g

as well as E(Y ja; x; u0) from external information. From these external quantities, it is then straightforward to

obtain E(Y ja; x; u) for each x and u. Note that this exact approach will require not only each odds ratio

E(Y ja; x; u)=f1� E(Y ja; x; u)g
E(Y ja; x; u0)=f1� E(Y ja; x; u0)g

as in the approximate formulas but also E(Y ja; x; u0) for some u0 and each x.

3. Complete Proofs of Theorems 1-5.

Proof of Theorem 1. We have that

da1 =
P

xfE(Y ja1; x)� E(Y ja0; x)gP (xja1)� fE(Ya1 ja1)� E(Ya0 ja1)g

=
P

x

P
uE(Y ja1; x; u)P (uja1; x)P (xja1)�

P
x

P
uE(Y ja0; x; u)P (uja0; x)P (xja1)

�
P

x

P
uE(Ya1 ja1; x; u)P (uja1; x)P (xja1) +

P
x

P
uE(Ya0 ja1; x; u)P (uja1; x)P (xja1)

=
P

x

P
uE(Ya0 ja1; x; u)P (uja1; x)P (xja1)�

P
x

P
uE(Y ja0; x; u)P (uja0; x)P (xja1)

=
P

x

P
uE(Y ja0; x; u)P (uja1; x)P (xja1)�

P
x

P
uE(Y ja0; x; u)P (uja0; x)P (xja1)

=
P

x

P
uE(Y ja0; x; u)fP (uja1; x)� P (uja0; x)gP (xja1)

=
P

x

P
ufE(Y ja0; x; u)� E(Y ja0; x; u

0)gfP (uja1; x)� P (uja0; x)gP (xja1):
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The proof for da0 is similar. As noted in the paper, for da+ we have that

da+ = f
P

xE(Y ja1; x)P (x)�
P

xE(Y ja0; x)P (x)g � fE(Ya1)� E(Ya0)g

=
P

x

P
uE(Y ja1; x; u)P (uja1; x)P (x)�

P
x

P
uE(Y ja0; x; u)P (uja0; x)P (x)

�
P

x

P
uE(Ya1 jx; u)P (ujx)P (x) +

P
x

P
uE(Ya0 jx; u)P (ujx)P (x)

=
P

x

P
uE(Y ja1; x; u)P (uja1; x)P (x)�

P
x

P
uE(Y ja0; x; u)P (uja0; x)P (x)

�
P

x

P
uE(Ya1 ja1; x; u)P (ujx)P (x) +

P
x

P
uE(Ya0 ja0; x; u)P (ujx)P (x)

=
P

x

P
uE(Y ja1; x; u)fP (uja1; x)� P (ujx)gP (x)

�
P

x

P
uE(Y ja0; x; u)fP (uja0; x)� P (ujx)gP (x)

=
P

x

P
ufE(Y ja1; x; u)� E(Y ja1; x; u

0)gfP (uja1; x)� P (ujx)gP (x)

�
P

x

P
ufE(Y ja0; x; u)� E(Y ja0; x; u

0)gfP (uja0; x)� P (ujx)gP (x).�

Proof of Theorem 2. We have that

dRRa1 (x) =
E(Y ja1; x)=E(Y ja0; x)
E(Ya1 ja1; x)=E(Ya0 ja1; x)

=
E(Ya0 ja1; x)
E(Y ja0; x)

=

P
uE(Ya0 ja1; x; u)P (uja1; x)P
uE(Y ja0; x; u)P (uja0; x)

=

P
uE(Y ja0; x; u)P (uja1; x)P
uE(Y ja0; x; u)P (uja0; x)

=

P
u
E(Y ja0;x;u)
E(Y ja0;x;u0)P (uja1; x)P

u
E(Y ja0;x;u)
E(Y ja0;x;u0)P (uja0; x)

:

The proof for dRRa0 (x) is similar. For d
RR
a+ (x) we have that

dRRa+ (x) =
E(Y ja1; x)=E(Y ja0; x)
E(Ya1 jx)=E(Ya0 jx)

=

P
uE(Y ja1; x; u)P (uja1; x)P

uE(Ya1 jx; u)P (ujx)
=

P
uE(Y ja0; x; u)P (uja0; x)P

uE(Ya0 jx; u)P (ujx)

=

P
uE(Y ja1; x; u)P (uja1; x)P
uE(Y ja1; x; u)P (ujx)

=

P
uE(Y ja0; x; u)P (uja0; x)P
uE(Y ja0; x; u)P (ujx)

=

P
u
E(Y ja1;x;u)
E(Y ja1;x;u0)P (uja1; x)P
u
E(Y ja1;x;u)
E(Y ja1;x;u0)P (ujx)

=

P
u
E(Y ja0;x;u)
E(Y ja0;x;u0)P (uja0; x)P
u
E(Y ja0;x;u)
E(Y ja0;x;u0)P (ujx)

:�
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Proof of Theorem 3. We have that

dRRa1 =

P
xE(Y ja1; x)P (xja1)=

P
xE(Y ja0; x)P (xja1)

E(Ya1 ja1)=E(Ya0 ja1)

=
E(Ya0 ja1)P

xE(Y ja0; x)P (xja1)

=

P
xE(Ya0 ja1; x)P (xja1)P
xE(Y ja0; x)P (xja1)

=

P
x

E(Y ja1;x)=E(Y ja0;x)
E(Ya1 ja1;x)=E(Ya0 ja1;x)

E(Y ja0; x)P (xja1)P
xE(Y ja0; x)P (xja1)

=

P
x d

RR
a1 (x)E(Y ja0; x)P (xja1)P
xE(Y ja0; x)P (xja1)

=

P
x d

RR
a1 (x)

E(Y ja0;x)
E(Y ja0;x0)P (xja1)P

x
E(Y ja0;x)
E(Y ja0;x0)P (xja1)

:

The proof for dRRa0 is similar. For dRRa+ we have that

dRRa+ =

P
xE(Y ja1; x)P (x)=

P
xE(Y ja0; x)P (x)

E(Ya1)=E(Ya0)

=

P
xE(Y ja1; x)P (x)P

x

P
uE(Y ja1; x; u)P (ujx)P (x)

=

P
xE(Y ja0; x)P (x)P

x

P
uE(Y ja0; x; u)P (ujx)P (x)

=

P
xE(Y ja1; x)P (x)P

x

P
u
E(Y ja1;x;u)P (ujx)
E(Y ja1;x) E(Y ja1; x)P (x)

=

P
xE(Y ja0; x)P (x)P

x

P
u
E(Y ja0;x;u)P (ujx)
E(Y ja0;x) E(Y ja0; x)P (x)

=

P
xE(Y ja1; x)P (x)P

x

P
u
E(Y ja1;x;u)P (ujx)P

u
E(Y ja1;x;u)P (uja1;x)

E(Y ja1; x)P (x)
=

P
xE(Y ja0; x)P (x)P

x

P
u
E(Y ja0;x;u)P (ujx)P

u
E(Y ja0;x;u)P (uja0;x)

E(Y ja0; x)P (x)

=

P
xE(Y ja1; x)P (x)P

x

P
u

E(Y ja1;x;u)
E(Y ja1;x;u0)

P (ujx)P
u

E(Y ja1;x;u)
E(Y ja1;x;u0)

P (uja1;x)
E(Y ja1; x)P (x)

=

P
xE(Y ja0; x)P (x)P

x

P
u

E(Y ja0;x;u)
E(Y ja0;x;u0)

P (ujx)P
u

E(Y ja0;x;u)
E(Y ja0;x;u0)

P (uja0;x)
E(Y ja0; x)P (x)

=

P
xE(Y ja1; x)P (x)P

x r1(x)
�1E(Y ja1; x)P (x)

=

P
xE(Y ja0; x)P (x)P

x r0(x)
�1E(Y ja0; x)P (x)

=

P
x
E(Y ja1;x)
E(Y ja1;x0)P (x)P

x r1(x)
�1 E(Y ja1;x)

E(Y ja1;x0)P (x)
=

P
x
E(Y ja0;x)
E(Y ja0;x0)P (x)P

x r0(x)
�1 E(Y ja0;x)

E(Y ja0;x0)P (x)
:�

Proof of Thoerem 4. We have that

dORa1 (x) =
E(Y ja1; x)=f1� E(Y ja1; x)g
E(Y ja0; x)=f1� E(Y ja0; x)g

=
E(Ya1 ja1; x)=f1� E(Ya1 ja1; x)g
E(Ya0 ja1; x)=f1� E(Ya0 ja1; x)g

=
E(Ya0 ja1; x)=f1� E(Ya0 ja1; x)g
E(Y ja0; x)=f1� E(Y ja0; x)g

=

P
uE(Ya0 ja1; x; u)P (uja1; x)

1�
P

uE(Ya0 ja1; x; u)P (uja1; x)
=

P
uE(Y ja0; x; u)P (uja0; x)

1�
P

uE(Y ja0; x; u)P (uja0; x)

=

P
uE(Y ja0; x; u)P (uja1; x)P

uf1� E(Y ja0; x; u)gP (uja1; x)
=

P
uE(Y ja0; x; u)P (uja0; x)P

uf1� E(Y ja0; x; u)gP (uja0; x)
:

8



The proof for dORa0 (x) is similar. For d
OR
a+ (x) we have that

dORa+ (x) =
E(Y ja1; x)=f1� E(Y ja1; x)g
E(Y ja0; x)=f1� E(Y ja0; x)g

=
E(Ya1 jx)=f1� E(Ya1 jx)g
E(Ya0 jx)=f1� E(Ya0 jx)g

=

P
u
E(Y ja1;x;u)P (uja1;x)

1�
P

u
E(Y ja1;x;u)P (uja1;x)P

u
E(Y ja0;x;u)P (uja0;x)

1�
P

u
E(Y ja0;x;u)P (uja0;x)

=

P
u
E(Ya1 jx;u)P (ujx)

1�
P

u
E(Ya1 jx;u)P (ujx)P

u
E(Ya0 jx;u)P (ujx)

1�
P

u
E(Ya0 jx;u)P (ujx)

=

P
u
E(Y ja1;x;u)P (uja1;x)

1�
P

u
E(Y ja1;x;u)P (uja1;x)P

u
E(Y ja0;x;u)P (uja0;x)

1�
P

u
E(Y ja0;x;u)P (uja0;x)

=

P
u
E(Y ja1;x;u)P (ujx)

1�
P

u
E(Y ja1;x;u)P (ujx)P

u
E(Y ja0;x;u)P (ujx)

1�
P

u
E(Y ja0;x;u)P (ujx)

=

P
u
E(Y ja1;x;u)P (uja1;x)P

u
f1�E(Y ja1;x;u)gP (uja1;x)P
u
E(Y ja0;x;u)P (uja0;x)P

u
f1�E(Y ja0;x;u)gP (uja0;x)

=

P
u
E(Y ja1;x;u)P (ujx)P

u
f1�E(Y ja1;x;u)gP (ujx)P
u
E(Y ja0;x;u)P (ujx)P

u
f1�E(Y ja0;x;u)gP (ujx)

:�

Proof of Theorem 5. We have that

dORa1 =

P
xE(Y ja1; x)P (xja1)=f1�

P
xE(Y ja1; x)P (xja1)gP

xE(Y ja0; x)P (xja1)=f1�
P

xE(Y ja0; x)P (xja1)g
=
E(Ya1 ja1)=f1� E(Ya1 ja1)g
E(Ya0 ja1)=f1� E(Ya0 ja1)g

=
E(Ya0 ja1)=f1� E(Ya0 ja1)gP

xE(Y ja0; x)P (xja1)=f1�
P

xE(Y ja0; x)P (xja1)g

=

P
x

P
uE(Ya0 ja1; x; u)P (uja1; x)P (xja1)

1�
P

x

P
uE(Ya0 ja1; x; u)P (uja1; x)P (xja1)

=

P
x

P
uE(Y ja0; x; u)P (uja0; x)P (xja1)

1�
P

x

P
uE(Y ja0; x; u)P (uja0; x)P (xja1)

=

P
x

P
uE(Y ja0; x; u)P (uja1; x)P (xja1)P

x

P
uf1� E(Y ja0; x; u)gP (uja1; x)P (xja1)

=

P
x

P
uE(Y ja0; x; u)P (uja0; x)P (xja1)P

x

P
uf1� E(Y ja0; x; u)gP (uja0; x)P (xja1)

:

The proof for dORa0 is similar. For dORa+ we have that

dORa+ =

P
xE(Y ja1; x)P (x)=f1�

P
xE(Y ja1; x)P (x)gP

xE(Y ja0; x)P (x)=f1�
P

xE(Y ja0; x)P (x)g
=
E(Ya1)=f1� E(Ya1)g
E(Ya0)=f1� E(Ya0)g

=

P
x

P
u
E(Y ja1;x;u)P (uja1;x)P (x)

1�
P

x

P
u
E(Y ja1;x;u)P (uja1;x)P (x)P

x

P
u
E(Y ja0;x;u)P (uja0;x)P (x)

1�
P

x

P
u
E(Y ja0;x;u)P (uja0;x)P (x)

=

P
x

P
u
E(Ya1 jx;u)P (ujx)P (x)

1�
P

x

P
u
E(Ya1 jx;u)P (ujx)P (x)P

x

P
u
E(Ya0 jx;u)P (ujx)P (x)

1�
P

x

P
u
E(Ya0 jx;u)P (ujx)P (x)

=

P
x

P
u
E(Y ja1;x;u)P (uja1;x)P (x)

1�
P

x

P
u
E(Y ja1;x;u)P (uja1;x)P (x)P

x

P
u
E(Y ja0;x;u)P (uja0;x)P (x)

1�
P

x

P
u
E(Y ja0;x;u)P (uja0;x)P (x)

=

P
x

P
u
E(Y ja1;x;u)P (ujx)P (x)

1�
P

x

P
u
E(Y ja1;x;u)P (ujx)P (x)P

x

P
u
E(Y ja0;x;u)P (ujx)P (x)

1�
P

x

P
u
E(Y ja0;x;u)P (ujx)P (x)

=

P
x

P
u
E(Y ja1;x;u)P (uja1;x)P (x)P

x

P
u
f1�E(Y ja1;x;u)gP (uja1;x)P (x)P

x

P
u
E(Y ja0;x;u)P (uja0;x)P (x)P

x

P
u
f1�E(Y ja0;x;u)gP (uja0;x)P (x)

=

P
x

P
u
E(Y ja1;x;u)P (ujx)P (x)P

x

P
u
f1�E(Y ja1;x;u)gP (ujx)P (x)P

x

P
u
E(Y ja0;x;u)P (ujx)P (x)P

x

P
u
f1�E(Y ja0;x;u)gP (ujx)P (x)

:�
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4. Application of Sensitivity Analysis Approach to Doubly Robust Estimation

To further demonstrate the �exibility of our approach, we apply it to a recent study40 employing a doubly

robust estimator for treatment e¤ects. There are multiple ways to implement doubly robust estimators41�44

for a binary treatment A and continuous outcome Y but essentially all methods specify models for E(Y ja; x)

and for E(Ajx) and will give consistent estimates for the adjusted mean outcome di¤erence
Z
x

fE(Y ja1; x) �

E(Y ja0; x)gdP (x) provided at least of one E(Y ja; x) or E(Ajx) are correctly speci�ed. Lambert and Pregibon40

consider the e¤ect of treatment A, the introduction of a new online advertising feature by an online search

system, on change in log (base 2) spending by advertisers eight weeks later, Y . The new feature is not o¤ered

to all advertisers; however, the authors control for covariates X including the length of time the advertiser

has been a customer, the way by which the advertiser became a customer, country, and baseline measures of

spending, number of reports requested by the advertiser, mean number of ad impressions shown per day, ratio

of mean daily clicks to ads, variance in daily spending, and mean spending per 1000 impressions. The analysis

is strati�ed by service level for the advertiser (tier 1 versus non-tier 1). They implement a doubly robust

estimator for the e¤ect of the new feature on change in log spending using estimators from Robins et al.41 and,

for non-tier 1 advertisers, obtain an estimate of 1:09 (95% CI: 0:33; 1:85) i.e. a spending ratio of 2:13 (= 21:09)

for those o¤ered the new feature.

We can apply the sensitivity analysis technique of the paper to the estimate obtained through the doubly

robust procedure. We might hypothesize an unmeasured confounding variable U denoting whether or not

anyone working for the advertiser has a personal friend working for the online search system; such a variable

was not controlled for in the analysis and could a¤ect both spending and whether or not the advertiser has

access to the new feature. Using the simple sensitivity analysis technique described in the paper we can

see that to completely eliminate the e¤ect estimate one could hypothesize, for example, that the likelihood

of there being a personal friend is 75 percentage points higher for those advertisers given access to the new

feature (e.g. 85% versus 10%) across strata of x, P (U = 1ja1; x) � P (U = 1ja0; x) = 0:75, and that the

e¤ect of having a personal friend on change in log spending over eight weeks was 1:45 across all strata of a; x,

E(Y ja; x; U = 1)�E(Y ja; x; U = 0) = 1:45 (i.e. a 21:45 = 2:73 times greater change in spending having a personal

friend working for the online search system); if this were the case, the e¤ect estimate would be reduced to 0 (95%

CI: �0:76; 0:76) since (0:75)(1:45) = 1:09. However, because having a personal friend working for the online

search system would likely a¤ect baseline spending and since this is controlled for in x, the additional e¤ect on

change in spending of having a personal friend at the online search system (i.e. 2:73 times greater change) might

be viewed as implausibly high in which case it would be di¢ cult to attribute the entire e¤ect to unmeasured

confounding. Lambert and Pregibon also consider retention of the advertiser after eight weeks as another

outcome and, using a doubly robust estimator, found that eight week retention rates for non-tier 1 advertisers

10



were 9% higher (95% CI: 1%; 18%) for advertisers given access to the new feature. A similar sensitivity analysis

suggests that if the likelihood of there being a personal friend is 75% higher and having such a personal friend

increases the likelihood of retention by 12% then this would su¢ ce to explain away the estimated e¤ect since

(0:75)(12%) = 9%. Arguably, the sensitivity analysis parameters needed to explain away the retention result

are more plausible than those required to explain away the spending result. In the application of Lambert

and Pregibon, sensitivity analysis techniques that rely on a regression11;14 or on propensity score strata6 are

inapplicable because of the doubly robust estimation approach but the simple sensitivity analysis described in

the previous section can still be employed; other sensitivity analysis techniques for doubly robust estimator

could alternatively be employed12 but the implementation of these is less straightforward than the approach

discussed above.
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