
Appendix 1: Technical details

Proof of Theorem 1

The proof of Theorem 1 will be given in the more general setting of K dis-

tinct event types. Define therefore εt ∈ {1, ..., K} as the event type of per-

son i and likewise for the counterfactual variables. Assume that the rate

for the event type k is well modeled by the Aalen additive hazard model;

that is assume that the rate satisfies

lim
dt→0

P (T ∈]t, t + dt], ε = k | T ≥ t,X = x, Z = z, M = m)/dt

= λk
0(t) + λk

1(t)x + λk
2(t)z + λk

3(t)m, (4)

where λk
j (t) are potentially time dependent coefficient functions and X and

Z can take vector values. Note that by a simple conditioning argument the

all course rate satisfies

lim
dt→0

P (T ∈]t, t + dt] | T ≥ t,X = x, Z = z, M = m)/dt

= g0(t) + g1(t)x + g2(t)z + g3(t)m,

for functions gj(t) =
∑K

k=1 λj(t).

In the case of multiple event types assumptions (A.1) to (A.5) read
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(A.1) No unmeasured confounding of the Exposure-Outcome relation;

that is X ⊥ (T x,m, εx,m)′ | Z.

(A.2) No unmeasured confounding of the Mediator-Outcome relation; that

is M ⊥ (T x,m, εx,m)′ | X,Z.

(A.3) No unmeasured confounding of the Exposure-Mediator relation;

that is X ⊥ Mx | Z.

(A.4) Mx∗ ⊥ (T x,m, εx,m)′ | Z

(A.5) MX = M and (TX,M , εX,M)′ = (T, ε)′.

Finally with γk(t; x, Mx) denoting the counterfactual rate of event type k

Theorem 1 can be restated as

Theorem 1 (generalized to multiple event types) Under assumptions

(A.1)-(A.5) it holds that the total causal effect of changing the exposure

from x∗ to x measured on the rate difference scale can be expressed as

γk(t; x, Mx)− γk(t; x∗, Mx∗)︸ ︷︷ ︸
TE(t)

= γk(t; x, Mx)− γk(t; x∗, Mx)

+γk(t; x∗, Mx)− γk(t; x∗, Mx∗)

= λk
1(t)(x− x∗)︸ ︷︷ ︸

DE(t)

+ λk
3(t)α1(x− x∗)︸ ︷︷ ︸

IE(t)

,

with TE, DE, and IE denoting total effect, natural direct effect, and nat-
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ural indirect effect, respectively.

Note that the theorem decomposes the total effect into the sum of the total

direct effect and the pure indirect effect.14 The decomposition could also

have been done as

γk(t; x, Mx)− γk(t; x, Mx∗) + γk(t; x, Mx∗)− γk(t; x∗, Mx∗),

corresponding to sum of the pure direct effect and the total indirect effect.

In the absence of interactions pure and total effects are equal.

Proof. The main challenge of the proof is to express the causal rate for

event type k, which is denoted γk(t; x, Mx∗), as a function of the parame-

ters of the estimated models. For ease of exposition we will assume that

the baseline covariates in Z are distributed on the finite set Z. However,

by replacing summation by integration at suitable instances the proof also

covers other types of baseline variables.

Initially rewrite the probability of an event of type k within the time inter-

val ]t, t + dt] for the counterfactual variable (T x,Mx∗
, εx,Mx∗

) conditional on

being at risk at time t as

P (T x,Mx∗ ∈ dt, εx,Mx∗

= k | T x,Mx∗ ≥ t)

=
∑
z∈Z

P (T x,Mx∗ ∈ dt, εx,Mx∗

= k | Z = z, T x,Mx∗ ≥ t)P (Z = z | T x,Mx∗ ≥ t).

(5)
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The first of the probabilities in the summation can be rewritten as

P (T x,Mx∗ ∈ dt, εx,Mx∗

= k | Z = z, T x,Mx∗ ≥ t)

=

∫
m∈R

P (T x,Mx∗ ∈ dt, εx,Mx∗

= k | Mx∗ = m,Z = z, T x,Mx∗ ≥ t)

×P (Mx∗ ∈ dm | Z = z, T x,Mx∗ ≥ t)

(a)
=

∫
m∈R

P (T x,m ∈ dt, εx,m = k | Z = z, T x,m ≥ t)

×P (Mx∗ ∈ dm | Z = z, T x,Mx∗ ≥ t)

(b)
=

∫
m∈R

P (T x,m ∈ dt, εx,m = k | Z = z, X = x, T x,m ≥ t)

×P (Mx∗ ∈ dm, T x,Mx∗ ≥ t | Z = z)

P (T x,Mx∗ ≥ t | Z = z)

=

∫
m∈R

P (T x,m ∈ dt, εx,m = k | Z = z, X = x, T x,m ≥ t)

×P (T x,Mx∗ ≥ t | Mx∗ ∈ dm, Z = z)P (Mx∗ ∈ dm | Z = z)

P (T x,Mx∗ ≥ t | Z = z)

(c)
=

∫
m∈R

P (T x,m ∈ dt, εx,m = k | Z = z, M = m,X = x, T x,m ≥ t)

×P (T x,m ≥ t | Z = z)P (Mx∗ ∈ dm | Z = z)

P (T x,Mx∗ ≥ t | Z = z)
,

(d)
=

∫
m∈R

P (T ∈ dt, ε = k | Z = z, M = m, X = x, T ≥ t)

× P (T x,m ≥ t | Z = z)P (M ∈ dm | Z = z, X = x∗)∫
m̃∈R P (T x,m̃ ≥ t | Z = z)P (M ∈ dm̃ | Z = z, X = x∗)

,

(6)

where equality (a) is due to assumption (A.4), equality (b) is due to as-

sumption (A.1), equality (c) is by assumption (A.2) and (A.4), and equal-
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ity (d) is due to assumption (A.3) and (A.5). Similar considerations com-

bined with the expression for the survival function for the Aalen additive

model, see Martinussen and Scheike (2006)17 p. 146, yield that

P (T x,m ≥ t | Z = z) = P (T ≥ t | Z = z, X = x, M = m)

= exp{−G0(t)−G1(t)x−G2(t)z −G3(t)m},

where Gj(t) =
∫ t

0
gj(s)ds. Hence by (4) and the bounded convergence theo-

rem it holds that

lim
dt→0

P (T x,Mx∗ ∈ dt, εx,Mx∗

= k | T x,Mx∗ ≥ t)/dt

=
∑
z∈Z

pz

{
E[exp{−G0(t)−G1(t)x−G2(t)z −G3(t)M} | X = x∗, Z = z]

}−1

×E
[
(λk

0(t) + λk
1(t)x + λk

2(t)z + λk
3(t)M)

exp{−G0(t)−G1(t)x−G2(t)z −G3(t)M} | X = x∗, Z = z
]

= λk
0(t) + λk

1(t)x

+
∑
z∈Z

{
λk

2(t)zpz +
E[λk

3(t)M exp{−G3(t)M} | X = x∗, Z = z]

E[exp{−G3(t)M} | X = x∗, Z = z]
pz

}
(7)

where pz = P (Z = z | T x,Mx∗ ≥ t). For a random variable U ∼ N(µ, ω2)

it holds by properties of the characteristic function of a normal random

variable23 that

E[U exp{aU}]
E[exp{aU}]

= µ + aω2.
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Since M is conditionally normal this results implies that (7) can be rewrit-

ten as

lim
dt→0

P (T x,Mx∗ ∈ dt, εx,Mx∗

= k | T x,Mx∗ ≥ t)/dt

= λk
0(t) + λk

1(t)x +
∑
z∈Z

{
λk

2(t)zpz + λk
3(t)(α0 + α1x

∗ + α2z −Gk
3(t)σ

2)pz

}
= λk

0(t) + λk
1(t)x + λk

3(t)(α0 + α1x
∗ −Gk

3(t)σ
2) +

∑
z∈Z

{
λk

2(t)zpz + λk
3(t)α2z

}
.

(8)

In summary it has been established that the counterfactual rate for event

type k can be expressed as

γk(t; x, Mx∗) = λk
0(t)+λk

1(t)x+λk
3(t)(α0+α1x

∗−Gk
3(t)σ

2)+
∑
z∈Z

{
λk

2(t)+λk
3(t)α2

}
zpz.

(9)

Hence on the rate difference scale the total causal effect of changing the

exposure from x∗ to x can be decomposed as

γk(t; x, Mx)− γk(t; x∗, Mx∗) = γk(t; x, Mx)− γk(t; x∗, Mx)

+(γk(t; x∗, Mx)− γk(t; x∗, Mx∗))

= λk
1(t)(x− x∗) + λk

3(t)α1(x− x∗).
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Cumulative measures of mediation

Following the tradition for Aalen models we also report a cumulative mea-

sures of mediation. From Theorem 1 the following corollary can easily be

derived

Corollary 1. Under assumptions (A.1)-(A.5) it holds that the counterfac-

tual rate difference at time t can be expressed as

∫ t

0

γ(s; x, Mx)− γ(s; x∗, Mx∗)ds

= (x− x∗)

∫ t

0

λ1(s)ds + α1(x− x∗)

∫ t

0

λ3(s)ds,

where the first term measures the natural cumulative direct effect and the

second term measures the natural cumulative indirect effect.

Confidence intervals with time dependent effects

Let θ1 denote the collection of parameters from the ordinary regression of

the mediator on the exposure and baseline covariates and θ2(t) denotes

the collection of parameter functions of the Aalen model. In order to dis-

cuss estimation uncertainty define the cumulative coefficient functions as

Θ2(t) =
∫ t

0
θ2(s)ds. Under mild regularity conditions, see e.g. Condition 5.1

of Martinussen and Scheike (2006),17 it holds that θ̂1 is asymptotically nor-
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mally distributed and for any t it holds that Θ̂2(t) is also asymptotically

normally distributed. In addition the two vectors of estimates are uncor-

related. The covariance matrices of the two vectors of estimates are avail-

able as output from standard statistical software. Hence the cumulative

direct effect at time t is asymptotically normal whilst the cumulative in-

direct effect at time t is asymptotically distributed as the product of two

uncorrelated normal random variables. Confidence bands and tests involv-

ing cumulative indirect effect can either be computed using the delta rule

or better yet by simulating a large number of realizations of the two uncor-

related random variables.
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Appendix 2: Implementation Guidelines

Through the package ”timereg” the statistical software package R has effi-

cient tools for estimating Aalen models. As R is less used among epidemi-

ologists this appendix provides a detailed explanation of how the results

presented in the paper were computed.

The data frame ses dat m contains the following variables

T2 Event or censor time event LSA event yes/no

SES SES in 5 levels logphys Logarithm of the physical index

coha Cohabitation yes/no child Children yes/no

age Age at baseline

for all male persons in the sample (N = 3458).

The regression results presented in Table 3 are obtained by the following

commands

ols_m <- glm(logphys ~ age + COHA + child + factor(SES),

data=ses_dat_m)

summary(ols_m)

The first step in computing the numbers of Table 4 is to fit an Aalen model,

which allows all coefficients to be time dependent. This can be done by the

commands

library(timereg)
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aalen_m1 <- aalen(Surv(T2,event) ~ age + COHA + child + logphys

+ factor(SES), data = ses_dat_m, robust=T )

The command summary(aalen_m1) tests the four hypothesis that none of

the coefficients need to be time dependent. As all of the p-values are above

80% the model is simplified such that the baseline risk is the only time de-

pendent component. Interaction terms can be included by arguments like

age*logphys. However, none of the interaction terms are significant af-

ter accounting for the number of tests conducted and are therefore not in-

cluded in the final model. The simplified model can be estimated by the

following commands

aalen_m2 <- aalen(Surv(T2,event) ~ const(age) + const(COHA)

+ const(child) + const(logphys)

+ const(factor(SES)), data = ses_dat_m, robust=T )

Finally the content of Table 4 is obtained by the command summary(aalen_m2).

The estimates of the direct effect (DE), indirect effect (IE), total effect

(TE), and the ratio of indirect effect to total effect can be obtained directly

from Table 4 by employing Theorem 1. However, only the confidence inter-

val for DE is immediately available. The other three are non-linear trans-

formations of the triple (λ̂1, λ̂3, α̂3). This triplet is asymptotically normal

with a mean equal to the corresponding true values of the parameters and
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a covariance matrix with the structure

Ω =


ω11 ω12 0

ω12 ω22 0

0 0 ω33

 .

The diagonal components are available from Table 4 and ω12 (the covari-

ance between λ̂1 and λ̂3) can be printed by the command aalen_m$var.gamma.

This assymptotic result implies that confidence intervals for IE, TE, and

IE/TE can be computed by simulation. The function below performs such

a simulation.

CI_comp <- function(mean_lambda1 ,mean_lambda3,covar11,covar12,

covar22, mean_alpha , var_alpha, G=10^4)

{

require(mvtnorm)

Omega <- matrix(c(covar11,covar12,covar12,covar22),nrow=2)

IE <- rep(0,G);TE <- rep(0,G);Q <- rep(0,G)

for(i in 1:G)

{

lambda <- rmvnorm(1, mean = c(mean_lambda1,mean_lambda2),

sigma = Omega)

alpha <- rnorm(1,mean=mean_alpha, sd=sqrt(var_alpha))

IE[i] <- lambda[2] * alpha
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TE[i] <- IE[i] + lambda[1]

Q[i] <- IE[i]/TE[i]

}

print("IE:")

print(mean(IE))

print(quantile(IE,c(0.025, 0.975)))

print("TE:")

print(mean(TE))

print(quantile(TE,c(0.025, 0.975)))

print("Q:")

print(mean(Q))

print(quantile(Q,c(0.025, 0.975)))

}

When the function has been loaded in R the confidence intervals can be

computed by a command like

f_out(mean_lambda1=0.000561 ,mean_lambda2=0.000234,

covar11=0.000197^2, covar12=-1.12*10^(-9), covar22=0.000054^2,

mean_alpha=0.67, var_alpha=0.066^2)
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Appendix 3: Bias and coverage rates

To asses bias and coverage rate of the stated confidence intervals we con-

duct a simulation study where we take the estimated parameters (including

the unreported baseline hazard) as ”true values” and simulate new data

sets. The censoring mechanism is taken as in the real data set. On each

simulated data set we compute all of the parameters discussed in the illus-

tration and can thereby asses bias and coverage rates. The result of 20,000

Monte Carlo replications is presented in Table 6 below. For the total, di-

rect and indirect effects the bias is consistently less than 2.5%. For the ra-

tio between the total and indirect effects we compare the median of the

simulated ratios with the true ratio as the bias cannot be defined for a ra-

tio. We find that the discrepancy is less than 1 percentage point. For the

total, direct and indirect effects the coverage rates for the confidence inter-

vals are found to be very close to the nominal level while the coverage rates

for the ratios of indirect to total effect are slightly oversized.
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Table 6: Relative bias and coverage rates (in parentheses) both in percent-
age points based on 20,000 Monte Carlo simulations.

DE IE TE IE/TE∗

Men I→II -2.29 (94.9) -2.55 (94.7) -2.34 (94.8) -0.11 (97.3)
Men I→III -2.26 (94.8) -2.50 (94.8) -2.35 (94.6) -0.13 (97.4)
Men I→IV -1.62 (94.8) -2.46 (94.8) -2.01 (94.8) -0.03 (95.3)
Men I→V -1.69 (94.9) -2.46 (94.8) -2.01 (94.8) -0.15 (95.0)
Women I→II -2.19 (95.1) -2.10 (94.5) -2.17 (95.0) -0.09 (97.0)
Women I→III -1.96 (95.0) -2.10 (94.5) -2.01 (95.0) -0.63 (97.1)
Women I→IV -2.16 (95.1) -2.07 (94.7) -2.10 (95.2) -0.90 (97.5)
Women I→V -2.20 (94.6) -2.07 (94.8) -2.15 (94.7) 0.00 (96.2)
∗the median of differences between simulated and true values.
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