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Figure A.1. Simplified DAG for the HWSE 
 

 

eAppendix 

G-estimation of accelerated failure-time models: A blueprint 

Causal models have evolved substantially over the past decade 

and are becoming part of the mainstream epidemiologic 

literature.1  These models aim to simulate randomized-

controlled trials, contrasting outcomes that would have been 

observed in scenarios where the same individuals are subjected 

to different levels of exposure. Unlike traditional (conditional) 

models, causal models may be used to obtain unbiased parameter estimates when time-varying 

confounders, or their correlates, are situated on the causal path from exposure to outcome.  This will 

occur if confounders are affected by prior exposure.  Such a situation may arise under the healthy 

worker survivor effect (HWSE) illustrated by Figure A.1, which shows a simplified directed acyclic 

graph (DAG)2 where arrows indicate causal relationships between outcome (D), and exposure (E), 

unmeasured health status (H) and time off work (L) at times 0, 1 and 2. This graph (which may not show 

all possible causal relationships in order to highlight those relevant to our discussion) assumes that 

exposure (E) affects health status (H), which itself affects both mortality risk (D) and exposure in 

subsequent years through increased time off work (L).  L could also represent transfer to a job with 

lower exposure, use of protective equipment or employment termination.  In the scenario described 

above, health status at time 0 (H0) would thus act both as an intermediate on the causal pathway 

between exposure at time 0 (E0) and outcome (D), and a confounder of the relation between exposure at 

time 1 (E1) and outcome (D).  The same applies to subsequent time points. 

 While traditional conditional methods yield biased estimates in situations such as the one described 

above, causal methods provide valid estimates by modeling exposure at every time point conditional on 



2 
 

prior exposure and measured covariates (such as time off work).  In occupational cohorts, however, 

exposure does not vary among unemployed individuals (they are always unexposed).  This violates a 

key assumption needed to apply marginal structural models (the so-called positivity or experimental 

treatment assignment assumption), which requires that both exposed and unexposed individuals be 

observed within every covariate stratum.3  G-estimation, in contrast, does not require this assumption 

and may thus be used to control for HWSE.4 

 G-estimation is a two-step iterative process whose objective is to unlink survival potential from 

observed exposure.  Survival potential, in the form of survival time when never exposed [denoted 

ܶሺ߰ሻ], is first estimated using an accelerated failure-time (AFT) model that is based on an unknown 

parameter to which a candidate value is assigned.  In the second step, the parameter value is tested by 

assessing the association between ܶሺ߰ሻ and observed exposure ܣሺݐሻ at each time t.  These two steps, 

described in detail below, are repeated with the objective of finding the parameter value resulting in 

a ܶሺ߰ሻ that is unrelated to ܣሺݐሻ.  This “correct” ܶሺ߰ሻ is denoted ଴ܶഥ. 

 Step 1 - Estimating ࢀ૙ഥ.  The AFT model used to estimate ଴ܶഥ is shown below [equation (A.1)].  It 

relies on the assumption that every individual possesses a set of survival times that correspond to 

specific exposure histories, only one of which is observed.  Since most of these survival times have not 

actually occurred, they are generally termed counterfactuals (i.e. contrary to fact).   The model, which is 

a function of observed survival time ( ஺ܶҧ), ܣሺݐሻ and an unknown parameter (߰), assumes that every year 

of exposure affects survival time by 1 െ ݁ట years.  In the first step, a candidate value of ߰ is selected 

and ܶሺ߰ሻ is calculated for each individual.  When the true value of the parameter is used, the function 

represents survival times that would have been observed had individuals never been exposed ( ଴ܶഥ).   

  

Equation (A.1) ܶሺ߰ሻ ൌ න exp ሾ߰ܣሺݐሻሿ

்ಲഥ

଴

dt 
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In our application, ܣሺݐሻ ൌ 1 if workers were ever exposed to straight MWF in year t, and 0 otherwise.  

An individual with ஺ܶҧ = 10 years and 6 years of exposure would thus be determined to have ܶሺ߰ሻ=  

6 expሺ߰ሻ ൅ 4. 

 Step 2. G-estimation. In this step, g-estimation is used to identify the value of ߰ that unlinks 

ܶሺ߰ሻ from A(t) conditional on fixed covariates (L) and time-varying covariates (such as exposure 

history ܣ, history of time off work ܱ and calendar year) up to time ݐ െ 1 in a pooled logistic regression 

model such as the one shown in equation (A.2).  This analysis is performed with a dataset in which 

every row represents a person-year.  Note that the analysis is restricted to individuals alive ( ஺ܶҧ > t) and 

actively employed (Em(t) = 1) at time t and that ܶሺ߰ሻ is expressed as a fixed (non-time-varying) 

variable. 

 

 

Equation (A.2) 

 

 

Steps 1 and 2 are repeated using an algorithm that performs a grid search until the value of ߰ that 

unlinks ܶሺ߰ሻ from A(t) (i.e. that results in ߚଵ ൌ 0 and p-value = 1 in the pooled logistic model) is found. 

This value is denoted ߰כ.  A manual grid search may also be implemented.  Alternatively, non-gradient-

based optimizers may be used.5  Time-varying covariates may be expressed in various ways.  We 

expressed exposure and off work histories as separate variables for ݐ െ ݐ ,1 െ ݐ ,2 െ ݐ ,7 ݋ݐ 3 െ  ,12 ݋ݐ 8

and ݐ ൒ 13. These variables may however be expressed as a cumulative sum, an average or other 

measure. 

,ሻ|ܶሺ߰ሻݐሺܣൣݎܲ ݐ݅݃݋݈ ,ܮ ݐሺܣ െ 1ሻ, ܱሺݐ െ 1ሻ, ሻݐሺ݉ܧ ൌ 1, ஺ܶҧ ൐  ൧  ݐ

ൌ ଴ߚ ൅ ଵܶሺ߰ሻߚ ൅ ݐሺܣଶߚ െ 1ሻ ൅ ݐሺܣଷߚ െ 2ሻ. . . ൅ߚସܱሺݐ െ 1ሻ ൅ ݐହܱሺߚ െ 2ሻ. . . ൅ߚ଺ܮ 
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 Assuming no unmeasured confounders and correct model specification, ߰כ ൌ 0 represents the 

null hypothesis, negative values represent beneficial exposures and positive values correspond to 

harmful exposures.  The value ݁ିటכ
 is the ratio of median survival times under a scenario in which the 

entire cohort is exposed without interruption throughout follow-up ( ଵܶഥ) to that in which the entire cohort 

is never exposed ( ଴ܶഥ). 

 

Equation (A.3)  

 

 

In our study, as well as in many occupational settings, very few workers were exposed to MWF without 

interruption.  Equation (A.3) may be generalized to estimate the contrast between the median survival 

time if the entire cohort had been exposed to straight MWF for the first ݉ years ( ௔ܶത) relative to the 

median survival time had the cohort remained unexposed throughout follow up ( ଴ܶഥ). 

 

Equation (A.4) 

 

We determined 95% confidence intervals by bootstrapping the above quantity 200 times.  

Alternatively, the lower and upper bounds of 95% confidence intervals may be identified by repeating 

the procedure described above with the objective of finding the two values of ߰ that result in p-values 

of 0.025 for ߚଵ using a robust variance estimator (e.g. the Huber-White sandwich estimator) that 

considers the non-independent structure of the data.  Other methods, based on the Wald statistic and a 

variance estimate for ߰6,כ may also be used. 

 

ଵܶഥ

଴ܶഥ
ൌ ݁ିటכ

 

௔ܶത

଴ܶഥ
ൌ ଴ܶഥ ൅ ݉ሾ1 െ expሺ߰ሻሿ

଴ܶഥ
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Competing Risks and Loss to Follow-Up 

 Because exposure and health status may result in loss to follow-up and/or deaths from causes other 

than the one under study (also referred to as competing risks), these types of censoring may result in 

selection bias.7  Assuming that all variables predicting mortality by competing risk and loss to follow-up 

were measured, one may correct for this bias by inverse probability weighting (IPW).  This method 

assigns weights to uncensored individuals that are equal to the inverse of the probability of being 

uncensored at time t.  In this manner, a person with a probability of not dying of competing cause and of 

not being lost to follow-up equal to 20 percent would be assigned a weight of five since four other 

individuals with the same characteristics would have been included in the analysis had censoring not 

occurred.  Weights are determined by logistic regression with the dependent variable being a 

dichotomous time-varying variable coded 1 if individuals were uncensored and 0 if they were censored 

at time t.  Independent variables include fixed and time-varying covariates, such as history of exposure 

and time off work up to ݐ െ 1.  For each individual, a running product of the predicted probabilities 

yields the cumulative probability of remaining uncensored at each time t; the inverse of this product is 

used as a weight in equation (A.2).  Individuals who are censored by competing risks or loss to follow-

up are excluded from this analysis.  The distribution of the weights should be examined and 

consideration should be given to truncating (i.e. replacing with smaller values) any extreme weights that 

may inflate confidence intervals.8  No extreme weights were observed in our analysis (range: 1.06-1.74) 

and so no truncation was performed. 

 

Administrative Censoring 

 Unexposed survival time cannot be computed using the accelerated failure-time model in 

equation (A.2) for individuals who survived beyond the end of follow up (i.e. were administratively 
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censored), and restricting analyses to those whose outcome was observed may introduce selection 

bias.  Restricting analyses to individuals whose outcome would have been observed under all 

exposure scenarios has however been shown to eliminate this bias.9  For individuals exposed to a 

harmful substance (i.e. if ߰ is positive), being never exposed ( ଴ܶഥ) would result in the longest survival 

time.  In this case, analyses should therefore be restricted to individuals whose outcome would have 

been observed even if they had never been exposed, i.e. those for whom ଴ܶഥ ൏  is the ܥ where ,ܥ

amount of time between the individual’s enrollment in the study and the date of end of follow-up.  

Conversely, survival when always exposed would result in the longest survival time for a beneficial 

exposure (i.e. if ߰ is negative) and thus analyses would be restricted to those whose outcome would 

have been observed had they been exposed throughout the study period.  Adjustment for 

administrative censoring is thus achieved by conditioning on (i.e. adjusting for) C and replacing ܶሺ߰ሻ 

by Δሺ߰ሻ in equation (A.2), where for each individual Δሺ߰ሻ is equal to 1 if the outcome of interest 

would have been observed and 0 otherwise. The value of Δሺ߰ሻ is thus determined using the following 

equations: 

 

For positive candidate values of ߰: 

 

Equation (A.5) 

 

For negative candidate values of ߰: 

 

Equation (A.6) 

 

Δሺ߰ሻ ൌ 1 if Tሺ߰ሻ݁ିట ൏  and ,ܥ

Δሺ߰ሻ ൌ 0 if Tሺ߰ሻ݁ିట ൒  ܥ

Δሺ߰ሻ ൌ 1 if ܶሺ߰ሻ ൏  and ,ܥ

Δሺ߰ሻ ൌ 0 if ܶሺ߰ሻ ൒  ܥ
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Note that another function of C and Tሺ߰ሻ has been shown to result in narrower confidence intervals 

than the one shown above10 but is more computationally challenging. 

 

Transforming survival ratios into hazard ratios 

 Although, as described in the Discussion section, survival ratios may be of greater public 

health relevance than hazard ratios, the epidemiological literature more commonly reports hazard 

ratios and so a method to transform the former into the latter may be of interest.  At least two methods 

may be used to generate hazard ratios.  First, a standard Cox proportional hazards model may be run 

on counterfactual survival and censoring times.  In order to do so, a dataset with survival times under 

both unexposed ( ଴ܶഥ) and exposed ( ௔ܶത) scenarios must be generated.  ଴ܶഥ is obtained using equation 

(A.1) and ௔ܶത may be computed using the numerator of equation (A.4) where: 

 

Equation (A.7) 

 

Under the unexposed scenario, individuals who are administratively censored (i.e. with Δሺ߰ሻ ൌ 0) 

are assumed to have been censored at time ܥ if ߰ is positive and at time ݁ܥట if ߰ is negative. 

Censoring times under the exposed scenario തܽ are computed using the censoring times under no 

exposure in equation A.7.  Hazard ratios may also be computed nonparametrically.  For both 

methods, confidence intervals may be determined by bootstrapping, and censoring by competing risk 

or loss to follow up is handled using IPW as described above.    

 

 

 

௔ܶത ൌ ଴ܶഥ ൅ ݉ሾ1 െ expሺ߰ሻሿ
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Summary 

We presented the procedure in logical order for pedagogical reasons.  In practice, the steps for 

implementing g-estimation will be performed in the following order. 

 

1. Fit a logistic regression model to estimate the probability of being free from competing risk and not 

lost to follow-up; calculate the IPWs. 

2. Choose a candidate value for ߰ and calculate ܶሺ߰ሻ, the candidate value for survival time under no 

exposure, based on the accelerated failure time model shown in equation (A.1). 

3. Determine Δሺ߰ሻ based on equations (A.5) or (A.6). 

4. Using the weights determined in step 1, fit a weighted pooled logistic regression to estimate whether 

 .ଵ= 0 in equation (A.2) but replace Tሺ߰ሻ by Δሺ߰ሻ and adjust for Cߚ

5. Repeat steps 2-4 until the value of ߰ that results in ߚଵ= 0 (or as close to 0 as possible) is found.  

6. Determine the upper and lower bounds of 95% confidence intervals.  This may be done either by 

bootstrapping steps 2-5, by repeating these steps to find values of ߰ that result in p-values of 0.025 for 

 .ଵ, or based on a Wald testߚ

7. Determine the survival ratio using equation (A.3) to compare scenarios in which the entire population 

is exposed throughout follow-up to that in which the population is never exposed, or equation (A.4) to 

obtain the effect of m years of exposure relative to no exposure.   

8. If desired, estimate the hazard ratio by a) generating a dataset comprising survival and censoring 

times under both unexposed and exposed counterfactual scenarios using equations (A.1) and (A.7), 

respectively, and b) running an unadjusted Cox model with exposure scenario as the independent 

variable. Confidence intervals for the hazard ratio may be determined by bootstrapping steps 2-5. 
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Note that g-estimation may also be performed by minimizing an estimating equation.5  This method, 

while being more conceptually challenging, may require less computing time.  We thus elected to use 

the estimating equation in the present paper and in STATA code available on our web site 

(http://ehs.sph.berkeley.edu/eisen/index.html). 
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