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S1. More on incidence, reproductive numbers, measurement errors and confidence intervals: We use weekly state-specific surveillance data on outpatient consultations for influenza-like illness, and virological testing of respiratory specimens collected by the US CDC
[image: image1.wmf]. These data were provided to us by Dr. Lyn Finelli, Lead of the Surveillance and Outbreak Response Team, Influenza Division, National Center for Immunization and Respiratory Diseases.

Given that some of the virological data positive for influenza A is un-subtyped, the weekly share of un-subtyped influenza A specimens 
[image: image2.wmf] attributed to influenza A(H1N1)pdm is defined to be proportional to the share of A(H1N1)pdm among the sub-typed specimens:
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The total weekly number of A(H1N1)pdm specimens is therefore
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The weekly incidence proxy 
[image: image5.wmf] for A(H1N1)pdm on week 
[image: image6.wmf] is defined as the percent of outpatient consultations in the surveillance data which are for influenza-like illness times the number of weekly A(H1N1)pdm specimens (described above) divided by the total number of tested weekly specimens. This incidence proxy is related to the daily growth (decline) rate 
[image: image7.wmf] of incidence during week 
[image: image8.wmf] by
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This definition assumes that the daily growth rate during week  
[image: image10.wmf] is constant. 

The latter assumption also allows one to express the reproductive number 
[image: image11.wmf] during week 
[image: image12.wmf](defined as the average number of infections causes by an individual who got infected during week 
[image: image13.wmf]) as follows: Suppose that incidence of influenza on day 
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[image: image15.wmf] . The assumption of a constant growth rate suggests that for days 
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[image: image19.wmf] is caused by individuals 
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 caused by 
[image: image23.wmf] being 
[image: image24.wmf], where 
[image: image25.wmf] is the serial interval. Thus, assuming a serial interval supported over a 7-day period 
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and hence 
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We note that that there is measurement error associated with the estimation of 
[image: image28.wmf], and hence the outcomes for the regression model in equation (2), and those measurement errors are state-specific and cannot be readily incorporated into a standard regression model. Those measurement errors come from the weekly estimates of the state-wide percentages of outpatient consultations for influenza-like illness (measured from count 
[image: image29.wmf] among 
[image: image30.wmf] patients in the surveillance system), percentages of respiratory specimens positive for influenza A and percentages of influenza A specimens attributable to influenza A(H1N1)pdm. 

We incorporate the above measurement error into inference by generating a random sample from the distribution of the effect 
[image: image31.wmf] of school opening on the ln(reproductive number) via the following principle: for two random variables 
[image: image32.wmf] and 
[image: image33.wmf], to generate a random sample 
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[image: image35.wmf], we can first generate a random sample 
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[image: image37.wmf] and then generate 
[image: image38.wmf] from the conditional distribution of 
[image: image39.wmf]. Thus we generate a random sample for 
[image: image40.wmf] in two steps:

1. We generate a posterior estimate of the true weekly state-specific proportions 
[image: image41.wmf] of medical consultations for influenza-like illness among all outpatient consultations in the population using the observed counts 
[image: image42.wmf] for influenza-like illness patients among 
[image: image43.wmf] visits to providers in the sentinel surveillance system for each state 
[image: image44.wmf]/week 
[image: image45.wmf], assuming that influenza-like illness cases represent a binomial sample among the sentinel surveillance system visitors, with the posterior distribution (under a flat prior) given by 
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Similarly, we generate posterior samples for the weekly state-specific percentages 
[image: image47.wmf]of respiratory specimens positive for influenza A, and the percentages 
[image: image48.wmf] of influenza A specimens attributable to influenza A(H1N1)pdm. We combine those to form a sample 
[image: image49.wmf] (
[image: image50.wmf]) of week/state specific collections of those quantities.

2. For each collection 
[image: image51.wmf] above, the effect 
[image: image52.wmf] of school opening on the ln(reproductive number) is estimated as an intercept in the corresponding linear regression model. Thus 
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Here 
[image: image54.wmf] is the estimate of the intercept in the regression model, 
[image: image55.wmf]is the estimate of the standard deviation of the intercept, and 
[image: image56.wmf] is a t-distribution with the same number of degrees of freedom as the regression model 2()
. We generate a value 
[image: image57.wmf] from the distribution in eq. S3.

Combining these two steps, we obtain a random sample 
[image: image58.wmf] for the effect of school opening on the reproductive number. The mean and the 95% credible interval for that sample are reported for each choice of a model in Table 1 in the main text. The effect of the humidity covariate is estimated in a similar manner.
S2. Sensitivity with regard to the choice of the serial interval
Our results in the main body of the text utilize the serial interval estimate for the 2009 A(H1N1)pdm obtained in
[image: image59.wmf]. We note that the results should be sensitive to the length of the serial interval, with longer serial intervals resulting in larger departures from 1 for the estimates of the reproductive numbers given by equation (2), and larger values for the difference in the (logarithms of) the reproductive numbers before and after school openings. 

The serial interval estimate we utilize has a mean 
[image: image60.wmf] days (and standard deviation 
[image: image61.wmf] days). Several other estimates of the serial interval for 2009 A(H1N1)pdm are available
[image: image62.wmf] with mean ranging between 2.5 and 3 days. To explore the sensitivity of our estimates to the choice of serial interval, we proceed as follows: Let 
[image: image63.wmf] be the serial interval in
[image: image64.wmf] (whose distribution is given by 
[image: image65.wmf]). We consider the following family of serial intervals 
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whose mean/standard deviation is
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We consider the following means/standard deviations for the serial interval given by eq. S4: 
[image: image69.wmf] and 
[image: image70.wmf]. Table S1    documents the estimated effect of school opening on the reproductive number for the corresponding 25 choices of serial interval mean and standard deviation.

	Mean\SD
	         0.95
	          1.15
	         1.35
	          1.55
	         1.75

	2.45
	       17.6% (9.4%,26.5%)
	       17.53%

(9.3%,26.3%)
	       17.37%

(9.2%,26.1%)
	       17.19%

(9%25.6%)
	      16.91% (8.9%,25.5%)

	2.6
	      18.83%

(10.1%,28.1%)
	       18.65% (9.6%,28.1%)
	       18.44%

(9.6%,27.5%)
	       18.3% (9.6%,27.4%)
	      18.08% (9.6%,27.2%)

	2.75
	      19.96% (10.5%,30%)
	       19.88% (10.4%,30%)
	       19.79% (10.6%,29.5%)
	       19.62% (10.6%,29.4%)
	        19.4% (10.1%,30%)

	2.9
	      21.28% (11.2%,32.3%)
	       21.13% (11.1%,32%)
	       20.97% (11.1%,31.7%)
	       20.75% (10.9%,31.3%)
	        20.6% (10.8%,30.8%)

	3.05
	      22.43% (11.7%,34.2%)
	       22.32% (11.8%,33.5%)
	       22.11% (11.4%,33.9%)
	       22.02% (11.6%,33.3%)
	        21.8% (11.4%,32.6%)


Table S1: Sensitivity of the estimated impact of school openings on the reproductive number with respect to the serial interval mean and standard deviation. Serial intervals considered are described by equation (S4).
We see that, as expected, the estimates increase with increasing means of the serial interval. Moreover, there is less sensitivity with respect to the standard deviation of the serial interval, with slight decreases in estimates as the standard deviation increases.
S3. Analysis with a three week window around school openings: In our analysis in the main body of the text, we have considered the increments in the natural logarithm of the epidemic’s reproductive number for a pair of weeks prior and following school opening (Eq. (3)) under the premise that such increments are largely attributed to the effect of school opening if the weeks in the considered pair are sufficiently close to each other. We have attempted to restrict the weeks used for inference to be as close to the opening week as possible for at least two additional reasons: 
· To avoid going deeper into the summer when potential differences in mixing patterns exist. 

· To avoid temporary peaks in incidence proxy 1-3 weeks after school opening, as were observed in some states, possibly caused by local depletion of susceptibles in places where incidence was higher than average when school opened. Reproductive numbers estimated during those periods would not represent the reproductive number immediately following school opening.

Here we present the results of the corresponding analysis for a three-week window around school openings. More precisely, for each state appearing in the two-week analysis in the main body of the text, we consider the following quantity
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Those quantities are then regressed either against an intercept, or against an intercept and a humidity covariate, whose value is given by 
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(compare with Eqs. (3) and (4)), with the estimation accounting for measurement error in the outcomes performed as described in section S1.

	
[image: image73.wmf] (cutoff)
	          15
	         20
	          25
	          30

	
[image: image74.wmf]increase
	      17.59 % (9.3%,26.6%)
	    16.91% (7.6%,26.9%)
	      17.97% (6%,30.8%)
	      17.97% (6%,30.8%)

	
[image: image75.wmf]increase after adjusting for humidity
	       19.0% (9.0%,30%)
	      18.38% (7.8%,30%)
	     19.28% (5.9%,34.4%)
	     19.28% (5.9%,34.4%)

	Average humidity covariate contribution
	       -1.27%

 (-5.4%,3.1%)
	      -1.27% 

(-5.3%,3%)  
	       -1.1% 

(-4.5%,2.5%)
	      -1.1% 

(-4.5%,2.5%)

	No. of states included
	          10
	          9
	            7
	           7


Table S2: Increase in the effective reproductive number associated with school opening for the 3-week analysis.
We see that the estimates for the effect of school opening on the reproductive number are similar though somewhat lower than the corresponding estimates in the main body of the text.
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