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For exposure A, mediator M and outcome T , let M(a) and T (a) = T (a,M(a)) define the coun-
terfactual mediator and outcome had exposure taken value a. Likewise, let T (a,m) define the
counterfactual outcome had exposure and mediator taken the value a and m, respectively. Finally
let T (a,M(a∗)) denote the counterfactual outcome had exposure taken value a and the mediator
taken the value it would have under treatment a∗. The average pure or natural direct effect on the
log-additive scale is then defined for a 6= a∗ :

NDE (a, a∗) = E {log T (a,M(a∗))} − E {log T (a∗)}
and the natural indirect effect is defined as

NIE (a, a∗) = E {log T (a)} − E {log T (a,M(a∗))}

Equivalently, we could write the above expressions conditioning on a set of confounders, Z. Through-
out, we make the assumption:

A ⊥⊥ {T (a,m),M(a)} | Z (A1)

and we further suppose that we also have for all a, a∗ :

T (a,m) ⊥⊥M(a∗)|A = a, Z (A2)

Under these assumptions, it follows that NDE (a, a∗) and NIE (a, a∗) are identified empirically
with2

E {log T (a,M(a∗))} =
∑
m,z

E {log T |a,m, z} f (m|a∗, z) f (z)

Derivation of the indirect effect under an AFT model: Suppose that the following acceler-
ated failure time model holds,

log T = β0 + βaA+ βmM + βTz Z + σε (A3)

where ε is an independent residual of arbitrary distribution and not necessarily mean zero.

Assume that M follows
M = α0 + αaA+ αTz Z + ξ (A4)

where ξ is a mean zero error independent of A and Z. Then,

E {log T (a,M(a∗))} =
∑
m,z

E {log T |a,m, z} f (m|a∗, z)

= β0 + βaa+ βmE(M | a∗, z) + βTz z + σε

= β0 + βaa+ βmα0 + βmαaa
∗ + αTz z + βTz z + σε
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which gives the following result,

NDE (a, a∗) = E {log T (a,M(a∗))} − E {log T (a∗,M(a∗))}
= E {log T (a,M(a∗)) | Z} − E {log T (a∗,M(a∗)) | Z}
= βa (a− a∗)

NIE (a, a∗) = E {log T (a,M(a))} − E {log T (a,M(a∗))}
= E {log T (a,M(a)) | Z} − E {log T (a,M(a∗)) | Z}
= βmαa (a− a∗)

Note that under the AFT model one has the stronger result that at the individual level,

NDE (a, a∗) = log T (a,M(a∗))− log T (a∗,M(a∗))

= βa (a− a∗)

NIE (a, a∗) = log T (a,M(a))− log T (a,M(a∗))

= βmαa (a− a∗)

For binary A with a = 1 and a∗ = 0, the indirect effect product method estimand is βmαa and the
natural direct effect is βa. The expression for the difference method is obtained from (A3) and (A4):

log T = β0 + βaA+ βmM + βTz Z + σε

= β0 + βaA+ βm(α0 + αaA+ αTz Z + ξ) + σε

= β0 + βmα0 + (βa + βmαa)A+ (βTz + αTz )Z + (σε+ βmξ)

= β∗0 + τaA+ β∗Tz Z + ε̃

(A5)

where ε̃ follows the distribution given by the convolution of the density of σε with that of βmξ,
which is independent of A and Z. The total effect is given by τa and the indirect effect from the
difference method is:

τa − βa = αaβm (A6)

The difference method estimand is obtained by positing a second accelerated failure time model for
T as a function of A and Z only, which shall be referred to as the reduced form model and would
typically be specified as followed:

log T = β∗0 + τaA+ β∗Tz Z + σν (A7)

where σ is some unknown scale parameter to be estimated. Therefore, when using the difference
method, one must specify the correct distribution of ν hoping to match that of ε̃ in (A5) – failure
to do so will result in model mis-specification.

Evaluating consistency of the maximum likelihood estimator for τa under model mis-
specification and right censoring: Suppose that one mis-specifies the reduced form density of
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T given A and Z from model (A7) with the density fT (t | X;α, β, σ) = fT (t | X) and survival
function ST (t | X;α, β, σ) = ST (t | X). Let X = (A,ZT )T , β = (τa, β

∗T
Z ), and α is the intercept

(β∗0 above). We show below that the maximum likelihood estimator of β, and thus τa, will be con-
sistent in the absence of censoring. However, in the presence of censoring, the maximum likelihood
estimator will not be consistent. We sketch the proof for the case of right censoring only.

The observed data is min(T,C) and I(T ≤ C) where T is event time and C is independent censoring
time. The log likelihood for a single observation is:

log ` = I(T ≤ C) log fT (T | X) + I(T > C) logST (C | X)

We can re-express this in terms of the rescaled residual error term, T0 = Te−α−βX = exp(σε),
which has density f0(T0 | X) = f0(T0) because the residual error is independent of X,

fT (t | X) = f0(te−α−βX)e−α−βX

We can re-express the log likelihood:

log ` = I(T ≤ C) log[f0(te−α−βX)e−α−βX ] + I(T > C) logS0(Ce−α−βX)

= I(T ≤ C) log(f0(teα−βX))− (α+ βX)I(T ≤ C) + I(T > C) log(S0(Ce−βX))

The score function of β, can be expressed as:

Uβ(β, α) =
d

dβ

[
I(T ≤ C) log(f0(teα−βX))− (α+ βX)I(T ≤ C) + I(T > C) log(S0(Ce−βX))

]
= −XI(T ≤ C)

ḟ0(te−α−βX)te−α−βX

f0(te−α−βX)
−XI(T ≤ C) + I(T > C)

d
dβS0(Ce−α−βX)

S0(Ce−α−βX)

= −XI(T ≤ C)
ḟ0(te−α−βX)te−α−βX

f0(te−α−βX)
−XI(T ≤ C)

+
I(T > C)

S0(Ce−α−βX)

d

dβ

(
1−

∫ C

0
f0(te−α−βX)e−α−βXdt

)
= −XI(T ≤ C)

ḟ0(te−α−βX)te−α−βX

f0(te−α−βX)
−XI(T ≤ C)

+
I(T > C)

S0(Ce−α−βX)

(
−
∫ C

0

d
dβ [f0(te−α−βX)e−α−βX ]

f0(te−α−βX)
f0(te−α−βX)dt

)
= −XI(T ≤ C)

ḟ0(te−α−βX)te−α−βX

f0(te−α−βX)
−XI(T ≤ C)

+
I(T > C)

S0(Ce−α−βX)

(
X

∫ C

0

ḟ0(te−α−βX)te−α−βXe−α−βX + f0(e−α−βX)e−α−βX

f0(te−α−βX)
f0(te−α−βX)dt

)

where ḟ0(·) is the derivative of f0(·) with respect to its argument.

Let (β̄, ᾱ) denote the limiting value of the MLE, i.e. (α̂, β̂)
P→ (β̄, ᾱ) where (α̂, β̂) is the MLE.

Then,
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E

([
Uβ(β̄, ᾱ)
Uα(β̄, ᾱ)

])
= 0

Now, we can take the expectation of the score of β conditional on C and X. Note that f∗0 (·)
indicates the true law:

E[Uβ(β̄, ᾱ) | C,X] = E

[
−XI(T ≤ C)

ḟ0(te−ᾱ−β̄X)te−ᾱ−β̄X

f0(te−ᾱ−β̄X)
−XI(T ≤ C)

+
I(T > C)

S0(Ce−ᾱ−β̄X)

(
X

∫ C

0

ḟ0(te−ᾱ−β̄X)te−ᾱ−β̄Xe−ᾱ−β̄X + f0(e−ᾱ−β̄X)e−ᾱ−β̄X

f0(te−ᾱ−β̄X)
f0(te−ᾱ−β̄X)dt

)
| C,X

]
=

∫ C

0

(−X)
ḟ0(te−ᾱ−β̄X)te−ᾱ−β̄X

f0(te−ᾱ−β̄X)
f∗0 (te−α−βX)e−α−βXdt+

∫ C

0

(−X)f∗0 (te−α−βX)e−α−βXdt

+

∫∞
C
f∗0 (te−α−βX)e−α−βXdt

S0(Ce−ᾱ−β̄X)

(
X

∫ C

0

ḟ0(te−ᾱ−β̄X)te−ᾱ−β̄Xe−ᾱ−βX + f0(e−ᾱ−β̄X)e−ᾱ−βX

f0(te−ᾱ−β̄X)
f0(te−ᾱ−β̄X)dt

)
=

∫ C

0

(−X)
ḟ0(te−ᾱ−β̄X)te−ᾱ−β̄X

f0(te−ᾱ−β̄X)
f∗0 (te−α−βX)e−α−βXdt+

∫ C

0

(−X)f∗0 (te−α−βX)e−α−βXdt

+
S∗0 (Ce−α−βX)

S0(Ce−ᾱ− ¯βX)

(
X

∫ C

0

ḟ0(te−ᾱ−β̄X)te−ᾱ−β̄X + f0(e−ᾱ−β̄X)

f0(te−ᾱ−β̄X)
f0(te−ᾱ−β̄X)e−ᾱ−β̄Xdt

)
=

∫ C

0

(−X)
ḟ0(te−ᾱ−β̄X)te−ᾱ−β̄X + f0(te−ᾱ−β̄X)

f0(te−ᾱ−β̄X)
f∗0 (te−α−βX)e−α−βXdt

+
S∗0 (Ce−α−βX)

S0(Ce−ᾱ−β̄X)

(
X

∫ C

0

ḟ0(te−ᾱ−β̄X)te−ᾱ−β̄X + f0(e−ᾱ−β̄X)

f0(te−ᾱ−β̄X)
f0(te−ᾱ−β̄X)e−ᾱ−β̄Xdt

)

Note that the conditional mean for the score of α is of similar form:

E[Uα(β̄, ᾱ) | C,X] =

∫ C

0
− ḟ0(te−ᾱ−β̄X)te−ᾱ−β̄X + f0(te−ᾱ−β̄X)

f0(te−ᾱ−β̄X)
f∗0 (te−α−βX)e−α−βXdt

+
S∗0(Ce−α−βX)

S0(Ce−ᾱ−β̄X)

(∫ C

0

ḟ0(te−ᾱ−β̄X)te−ᾱ−β̄X + f0(e−ᾱ−β̄X)

f0(te−ᾱ−β̄X)
f0(te−ᾱ−β̄X)e−ᾱ−β̄Xdt

)

Let p be the mean vector for the vector X. Noting that E
[
Uβ(β̄, ᾱ)] = 0 and E

[
Uα(β̄, ᾱ)] = 0, we

can write,

E
[
Uβ(β̄, ᾱ)] = E

[
Uβ(β̄, ᾱ)− pUα(β̄, ᾱ)

]
= E

[
− (X − p)

∫ C

0

ḟ0(te−ᾱ−β̄X)te−ᾱ−β̄X + f0(te−ᾱ−β̄X)

f0(te−ᾱ−β̄X)
f∗0 (te−α−βX)e−α−βXdt

+ (X − p)S
∗
0(Ce−α−βX)

S0(Ce−ᾱ−β̄X)

(∫ C

0

ḟ0(te−ᾱ−β̄X)te−ᾱ−β̄X + f0(e−ᾱ−β̄X)

f0(te−ᾱ−β̄X)
f0(te−ᾱ−β̄X)e−ᾱ−β̄Xdt

)]

We will now plug in the true values to assess whether we get an unbiased score equation under
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model mis-specification for β, i.e. E
[
Uβ(β, ᾱ)] = 0. Suppose that β̄ = β :

= E

[
− (X − p)

∫ C

0

ḟ0(te−ᾱ−βX)te−ᾱ−βX + f0(te−ᾱ−βX)

f0(te−ᾱ−βX)
f∗0 (te−α−βX)e−α−βXdt

+ (X − p)S
∗
0(Ce−α−βX)

S0(Ce−ᾱ−βX)

(∫ C

0

ḟ0(te−ᾱ−βX)te−ᾱ−βX + f0(e−ᾱ−βX)

f0(te−ᾱ−βX)
f0(te−ᾱ−βX)e−ᾱ−βXdt

)]
= E

[
− (X − p)

∫ Ce−βX

0

ḟ0(e−ᾱu)e−ᾱu+ f0(e−ᾱu)

f0(e−ᾱu)
f∗0 (e−αu)e−αdu

+ (X − p)S
∗
0(Ce−α−βX)

S0(Ce−ᾱ−βX)

∫ Ce−βX

0

ḟ0(e−ᾱu)e−ᾱu+ f0(e−ᾱu)

f0(e−ᾱu)
f0(e−ᾱu)e−ᾱdu

]
= E

[
(p−X)

∫ Ce−βX

0

[
1− S∗0(Ce−α−βX)f0(e−ᾱu)e−ᾱ

S0(Ce−ᾱ−βX)f∗0 (e−αu)e−α
] ḟ0(e−ᾱu)u+ f0(e−ᾱu)

f0(e−ᾱu)
f∗0 (e−αu)e−αdu

]
=

∫ ∞
0

E

[
(p−X)

[
1− S∗0(Ce−α−βX)f0(e−ᾱu)e−ᾱ

S0(Ce−ᾱ−βX)f∗0 (e−αu)e−α
]
I(u < Ce−βX)

]
ḟ0(e−ᾱu)u+ f0(e−ᾱu)

f0(e−ᾱu)
f∗0 (e−αu)e−αdu (A8)

If there is no right censoring (C →∞), and for every value of x:

I
(
u < Ce−βx

)
→ 1

S∗T
(
Ce−α−βx

)
ST (Ce−ᾱ−βx)

→ 1

in which case the expectation evaluates to zero, and the score for β is unbiased. Additionally, if
the model is not mis-specified, so that S∗0(·) = S0(·) and f∗0 (·) = f0(·), then the score for β will also
be unbiased regardless of censoring. Thus, the association of X with T is consistent in the absence
of censoring. However, in the presence of censoring, the above will not necessarily evaluate to zero.
To show this, we consider a special case when X is binary:

=

∫ ∞
0

E

[
(p−X)X

([
1− S∗0(Ce−α−β)f0(e−ᾱu)e−ᾱ

S0(Ce−ᾱ−β)f∗0 (e−αu)e−α
]
I(u < Ce−β)−

[
1− S∗0(Ce−α)f0(e−ᾱu)e−ᾱ

S0(Ce−ᾱ)f∗0 (e−αu)e−α
]
I(u < C)

)
+
[
1− S∗0(Ce−α)f0(e−ᾱu)e−ᾱ

S0(Ce−ᾱ)f∗0 (e−αu)e−α
]
I(u < C)

]
ḟ0(e−ᾱu)u+ f0(e−ᾱu)

f0(e−ᾱu)
f∗0 (e−αu)e−αdu

=

∫ ∞
0

E

[
(X − p)X

(
S∗0(Ce−α−β)

S0(Ce−ᾱ−β)
I(u < Ce−β)− S∗0(Ce−α)

S0(Ce−ᾱ)
I(u < C)

)
f0(e−ᾱu)e−ᾱ

f∗0 (e−αu)e−α

]
× ḟ0(e−ᾱu)u+ f0(e−ᾱu)

f0(e−ᾱu)
f∗0 (e−αu)e−αdu

= p(1− p)
∫ ∞

0
E

[
S∗0(Ce−α−β)

S0(Ce−ᾱ−β)
I(u < Ce−β)− S∗0(Ce−α)

S0(Ce−ᾱ)
I(u < C)

]
e−ᾱ[ḟ0(e−ᾱu)u+ f0(e−ᾱu)]du

The above expression will generally be nonzero except at exceptional laws, such as when β = 0.
Therefore, in the presence of model mis-specification, censoring, and a non-null effect, the MLE of
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τa will not be consistent.

Evaluating consistency of the maximum likelihood estimator for τa under model mis-
specification and left truncation: Suppose that one mis-specifies the reduced form density of
T given A and Z from model (A7) with the density fT (t | X;α, β, σ) = fT (t | X) and survival
function ST (t | X;α, β, σ) = ST (t | X). Let X = (A,ZT )T , β = (τa, β

∗T
Z ), and α is the intercept

(β∗0 above). We show below that the maximum likelihood estimator of β, and thus τa, will be con-
sistent in the absence of left truncation. However, in the presence of left truncation, the maximum
likelihood estimate will not be consistent.

Let T be left truncated at V such that we consider T | T ≥ V assuming that the truncation time
is independent of T and X, but otherwise follows an unrestricted density. The log likelihood for a
single observation subject to left truncation is:

log ` = log fT (T | X)− logST (V | X)

We can re-express this in terms of the rescaled residual error term, T0 = Te−α−βX = exp(σε),
which has density f0(T0 | X) = f0(T0) because the residual error term is independent of X, the
following way:

fT (t | X) = f0(te−α−βX)e−α−βX

We can re-express the log likelihood:

log ` = log[f0(te−α−βX)e−α−βX ]− log(S0(V e−α−βX))

= log[f0(te−α−βX)]− (α+ βX)− log(S0(V e−α−βX))

The score function of β can be expressed as:

Uβ(α, β) = −X ḟ0(te−α−βX)te−α−βX

f0(te−α−βX)
−X −

d
dβS0(V e−α−βX)

S0(V −α−βX)

= −X ḟ0(te−α−βX)te−α−βX

f0(te−α−βX)
−X − 1

S0(V e−α−βX)

d

dβ

(
1−

∫ V

0
f0(te−α−βX)e−α−βXdt

)
= −X ḟ0(te−α−βX)te−α−βX

f0(te−α−βX)
−X − 1

S0(V e−α−βX)

d

dβ

(∫ ∞
V

f0(te−α−βX)e−α−βXdt

)
= −X ḟ0(te−α−βX)te−α−βX

f0(te−α−βX)
−X − 1

S0(V e−α−βX)

(∫ ∞
V

d
dβ [f0(te−α−βX)e−α−βX ]

f0(te−α−βX)
f0(te−α−βX)dt

)
= −X ḟ0(te−α−βX)te−α−βX

f0(te−α−βX)
−X

+
1

S0(V e−α−βX)

(
X

∫ ∞
V

ḟ0(te−α−βX)te−α−βXe−α−βX + f0(e−α−βX)e−α−βX

f0(te−α−βX)
f0(te−α−βX)dt

)

where ḟ0 is the derivative of f0 with respect to its argument.
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Let (β̄, ᾱ) denote the limiting value of the MLE, i.e. (α̂, β̂)
P→ (β̄, ᾱ) where (α̂, β̂) is the MLE.

Then,

E

([
Uβ(β̄, ᾱ)
Uα(β̄, ᾱ)

])
= 0

Now, we can take the expectation of the score of β conditional on X with respect to the density of
T | T > V . Note that f∗0 (·) indicates the true law:

E[Uβ(β̄, ᾱ) | X,V ] =

∫ ∞
V

(−X)
ḟ0(te−ᾱ−β̄X)te−ᾱ−β̄X

f0(te−ᾱ−β̄X)

f∗0 (te−α−βX)

S∗0 (V e−α−βX)
e−α−βXdt+

∫ ∞
V

(−X)
f∗0 (te−α−βX)

S∗0 (V e−α−βX)
e−α−βXdt

+

∫∞
V

f∗0 (te−α−βX )

S∗
0 (V e−α−βX )

e−α−βXdt

S0(V e−ᾱ−β̄X)

(
X

∫ ∞
V

ḟ0(te−ᾱ−β̄X)te−ᾱ−β̄Xe−ᾱ−β̄X + f0(e−ᾱ−β̄X)e−ᾱ−β̄X

f0(te−ᾱ−β̄X)
f0(te−ᾱ−β̄X)dt

)
=

∫ ∞
V

(−X)
ḟ0(te−ᾱ−β̄X)te−ᾱ−β̄X

f0(te−ᾱ−β̄X)

f∗0 (te−α−βX)

S∗0 (V e−α−βX)
e−α−βXdt+

∫ ∞
V

(−X)
f∗0 (te−α−βX)

S∗0 (V e−α−βX)
e−α−βXdt

+
1

S0(V e−ᾱ−β̄X)

(
X

∫ ∞
V

ḟ0(te−ᾱ−β̄X)te−ᾱ−β̄Xe−ᾱ−β̄X + f0(e−ᾱ−β̄X)e−ᾱ−β̄X

f0(te−ᾱ−β̄X)
f0(te−ᾱ−β̄X)dt

)
=

1

S∗0 (V e−α−βX)

∫ ∞
V

(−X)
ḟ0(te−ᾱ−β̄X)te−ᾱ−β̄X + f0(te−ᾱ−β̄X)

f0(te−ᾱ−β̄X)
f∗0 (te−α−βX)e−α−βXdt

+
1

S0(V e−ᾱ−β̄X)

(
X

∫ ∞
V

ḟ0(te−ᾱ−β̄X)te−ᾱ−β̄X + f0(e−ᾱ−β̄X)

f0(te−ᾱ−β̄X)
f0(te−ᾱ−β̄X)e−ᾱ−β̄Xdt

)

Note that the conditional mean for the score of α is of similar form and satisfies:

E[Uα(β̄, ᾱ) | X,V ] =
1

S∗0(V e−α−βX)

∫ ∞
V

(−X)
ḟ0(te−ᾱ−β̄X)te−ᾱ−β̄X + f0(te−ᾱ−β̄X)

f0(te−ᾱ−β̄X)
f∗0 (te−α−βX)e−α−βXdt

+
1

S0(V e−ᾱ−β̄X)

(
X

∫ ∞
V

ḟ0(te−ᾱ−β̄X)te−ᾱ−β̄X + f0(e−ᾱ−β̄X)

f0(te−ᾱ−β̄X)
f0(te−ᾱ−β̄X)e−ᾱ−β̄Xdt

)

Let p be the mean vector for the vector X. Noting that E
[
Uβ(β̄, ᾱ)] = 0 and E

[
Uα(β̄, ᾱ)] = 0, we

can write,

E
[
Uβ(β̄, ᾱ)] = E

[
Uβ(β̄, ᾱ)− pUα(β̄, ᾱ)

]
= E

[
− (X − p) 1

S∗0(V e−α−βX)

∫ ∞
V

ḟ0(te−ᾱ−β̄X)te−ᾱ−β̄X + f0(te−ᾱ−β̄X)

f0(te−ᾱ−β̄X)
f∗0 (te−α−βX)e−α−βXdt

+ (X − p) 1

S0(V e−ᾱ−β̄X)

(∫ ∞
V

ḟ0(te−ᾱ−β̄X)te−ᾱ−β̄X + f0(e−ᾱ−β̄X)

f0(te−ᾱ−β̄X)
f0(te−ᾱ−β̄X)e−ᾱ−β̄Xdt

)]

We will now plug in the true values to assess whether we get an unbiased score equation under
model mis-specification for β, i.e. E

[
Uβ(β, ᾱ)] = 0. Suppose that β̄ = β :
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= E

[
− (X − p) 1

S∗0(V e−α−βX)

∫ ∞
V

ḟ0(te−ᾱ−βX)te−ᾱ−βX + f0(te−ᾱ−βX)

f0(te−ᾱ−βX)
f∗0 (te−α−βX)e−α−βXdt

+ (X − p) 1

S0(V e−ᾱ−βX)

(∫ ∞
V

ḟ0(te−ᾱ−βX)te−ᾱ−βX + f0(e−ᾱ−βX)

f0(te−ᾱ−βX)
f0(te−ᾱ−βX)e−ᾱ−βXdt

)]
= E

[
− (X − p) 1

S∗0(V e−α−βX)

∫ ∞
V e−βX

ḟ0(e−ᾱu)e−ᾱu+ f0(e−ᾱu)

f0(e−ᾱu)
f∗0 (e−αu)e−αdu

+ (X − p) 1

S0(V e−ᾱ−βX)

(∫ ∞
V e−βX

ḟ0(e−ᾱu)e−ᾱu+ f0(e−ᾱu)

f0(e−ᾱu)
f0(e−ᾱu)e−ᾱdu

)]
= E

[
− (X − p)

∫ ∞
V e−βX

[ 1

S∗0(V e−α−βX)
− f0(e−ᾱu)e−ᾱ

f∗0 (e−αu)e−αS0(V e−ᾱ−βX)

]
× ḟ0(e−ᾱu)e−ᾱu+ f0(e−ᾱu)

f0(e−ᾱu)
f∗0 (e−αu)e−αdu

]
=

∫ ∞
0

E

[
− (X − p)

[ 1

S∗0(V e−α−βX)
− f0(e−ᾱu)e−ᾱ

f∗0 (e−αu)e−αS0(V e−ᾱ−βX)

]
I(u > V e−βX)

]
× ḟ0(e−ᾱu)e−ᾱu+ f0(e−ᾱu)

f0(e−ᾱu)
f∗0 (e−αu)e−αdu (A9)

If there is no left truncation (V = 0), and for every value of x:

I(u > V e−βx) = I (u > 0) = 1

1

S∗0(V e−α−βX)
− f0(e−ᾱu)e−ᾱ

f∗0 (e−αu)e−αS0(V e−ᾱ−βX)
= 1− f0(e−ᾱu)e−ᾱ

f∗0 (e−αu)e−α

in which case the expectation evaluates to zero, and the score for β is unbiased. Additionally, if
the model is not mis-specified, so that S∗0(·) = S0(·) and f∗0 (·) = f0(·), then the score for β will also
be unbiased. Thus, the association of X with T is consistent in the absence of censoring. However,
in the presence of left truncation, the above will not necessarily evaluate to zero. To show this, we
consider a special case when X is binary:
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=

∫ ∞
0

E

[
− (X − p)X

([ 1

S∗0(V e−α−β)
− f0(e−ᾱu)e−ᾱ

f∗0 (e−αu)e−αS0(V e−ᾱ−β)

]
I(u > V e−β)

−
[ 1

S∗0(V e−α)
− f0(e−ᾱu)e−ᾱ

f∗0 (e−αu)e−αS0(V e−ᾱ)

]
I(u > V )

)
+

f0(e−ᾱu)e−ᾱ

f∗0 (e−αu)e−αS0(V e−ᾱ)

]
I(u > V )

]
ḟ0(e−ᾱu)e−ᾱu+ f0(e−ᾱu)

f0(e−ᾱu)
f∗0 (e−αu)e−αdu

=

∫ ∞
0

E

[
− (X − p)X

([ 1

S∗0(V e−α−β)
− f0(e−ᾱu)e−ᾱ

f∗0 (e−αu)e−αS0(V e−ᾱ−β)

]
I(u > V e−β)

−
[ 1

S∗0(V e−α)
− f0(e−ᾱu)e−ᾱ

f∗0 (e−αu)e−αS0(V e−ᾱ)

]
I(u > V )

)]
ḟ0(e−ᾱu)e−ᾱu+ f0(e−ᾱu)

f0(e−ᾱu)
f∗0 (e−αu)e−αdu

= −p(1− p)
∫ ∞

0
E

[[ 1

S∗0(V e−α−β)
− f0(e−ᾱu)e−ᾱ

f∗0 (e−αu)e−αS0(V e−ᾱ−β)

]
I(u > V e−β)

−
[ 1

S∗0(V e−α)
− f0(e−ᾱu)e−ᾱ

f∗0 (e−αu)e−αS0(V e−ᾱ)

]
I(u > V )

]
ḟ0(e−ᾱu)e−ᾱu+ f0(e−ᾱu)

f0(e−ᾱu)
f∗0 (e−αu)e−αdu

The above expression will generally be nonzero except at exceptional laws, such as when β = 0.
Therefore, in the presence of model mis-specification, censoring, and a non-null effect, the MLE of
τa will not be consistent.

An issue with equivalence of the product and difference method indirect effect under
a AFT model with a Weibull outcome, no censoring: Consider model (A3) and (A4), where
ε follows an extreme value distribution and ξ is normally distributed. Then the implied reduced
form model is given by:

log T = β0 + βaA+ βmM + βTz Z + σε

= β0 + βaA+ βm(α0 + αaA+ αTz Zξ) + βTz Z + σε

= β0 + βmα0 + (βa + βmαa)A+ (αTz + βTz )Z + (σε+ βmξ)

= β∗0 + τaA+ β∗Tz Z + ε̃

(A10)

where β∗0 = βmα0 + β0, β
∗T
z = αTz + βTz , ε̃ = βmξ + σε and τa = αaβm + βa. The above model is an

AFT model since ε̃ is independent of A and C which follows from (ξ, ε) independent of A and C.
However, the reduced-form density of log T given A and C is of a complicated form given by the
convolution of a normal density with an extreme value density: fε̃(·) =

∫
ε

1
βm
fξ(
·−σε
βm

)g(ε)dε, where
g(ε) is the extreme value density and βm 6= 0. Thus, ε̃ will not have an extreme value distribution,
so that the reduced form model is mis-specified if an extreme value density is assumed for fε̃. As
we showed in the previous section, in the presence of censoring, the estimator of τa will therefore
fail to be consistent; thus, the difference method indirect effect estimator will not be consistent for
the indirect effect. However, according to our results, in the absence of censoring, the difference
method estimator will be consistent for the indirect effect.

Equivalence of the product and difference method indirect effect under a AFT model
with a log-normal outcome: In contrast, if ε and ξ are both normal, the reduced-form density of
log T given A and C is of correct form because the convolution of two independent normal densities

9



Figure A1: Simulation Study, Product vs. Difference Method for the Indirect Effect
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will also be a normal density. Due to this, the reduced form model (A7) will be correctly specified,
so the estimator of τa will be consistent. Thus, the difference method, τa − βa, will be a consistent
estimator for the indirect effect.

Monte Carlo variance for indirect effect estimates in the simulation study:
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R Code for direct and indirect effect estimates from data application:

##Calculate indirect and direct effect estimates:

#normally distributed time to event outcome

#normally distributed mediator

#no interaction between exposure and mediator

#interval and right censoring

#exp is the exposure variable (A in the paper)

#med is the mediator variable (M in the paper)

#time1 is the left interval

#time2 is the right interval; NA for right censored data

#cov1,..,cov5 are the potential confounders

#choose the correct library in R

library(survival)

#full model

full.model <- survreg(Surv(time1,time2,type=c(’interval2’)) ~ exp + med + cov1 + cov2 +

cov3 + cov4 + cov5, dist="gaussian")

#reduced model

exp.model <- survreg(Surv(time1,time2,type=c(’interval2’)) ~ exp + cov1 + cov2 + cov3

cov4 + cov5, dist="gaussian")

#mediator model

med.model <- lm(med ~ exp + cov1 + cov2 + cov3 + cov4 + cov5)

#Calculating direct and indirect effects

nde <- full.model$coefficients[2]

nie.prod <- med.model$coefficients[2]*full.model$coefficients[3]

nie.diff <- exp.model$coefficients[2]-full.model$coefficients[2]

#Calculating standard errors for the indirect (product) and direct effect estimates

se_nde <- sqrt(full.model$var[2,2])

se_nie.prod <- sqrt((med.model$coefficients[2]^2)*full.model$var[3,3] +

(full.model$coefficients[3]^2)*summary(med.model)$cov[2,2])

####################################

##Calculate indirect and direct effect estimates:

#Weibull distributed time to event outcome

#normally distributed mediator

#no interaction between exposure and mediator

#right censoring

#exp is the exposure variable (A in the paper)

#med is the mediator variable (M in the paper)
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#outcome is the time of event or censoring

#censor is a binary variable indicating censoring

#cov1,..,cov3 are the potential confounders

#full model

full.model <- survreg(Surv(outcome, censor) ~ exp + med + cov1 + cov2 + cov3,

dist="weibull")

#reduced model -- Recall the total effect is biased!

exp.model <- survreg(Surv(outcome, censor) ~ exp + cov1 + cov2 + cov3, dist="weibull")

#mediator model

med.model <- lm(med ~ exp + cov1 + cov2 + cov3)

#Calculating direct and indirect effects

nde <- full.model$coefficients[2]

nie.prod <- med.model$coefficients[2]*full.model$coefficients[3]

nie.diff <- exp.model$coefficients[2]-full.model$coefficients[2] #this is biased!

#Calculating standard errors for the indirect (product) and direct effect estimates

se_nde <- sqrt(full.model$var[2,2])

se_nie.prod <- sqrt((med.model$coefficients[2]^2)*full.model$var[3,3] +

(full.model$coefficients[3]^2)*summary(med.model)$cov[2,2])

##### NOTES #####

#The nie.diff estimator under the Weibull model will be biased in the presence of censoring

#To calculate the standard errors for the indirect effect (difference), use the boostrap

#Bootstrap code available upon request

12


