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In this supplement, we briefly review the most common information criteria for selecting

a working correlation structure in the context of generalized estimating equations, before

turning to a particular form of marginal model in which only the independence structure

should be used for estimation to demonstrate the bias that can occur when an incorrect

structure is chosen – a bias first raised in a cautionary note over two decades ago [7].

Quasi-likelihood and related criteria

Suppose data are collected on n individuals over time, with the ith individual being

observed mi times; in what follows t (t = 1, . . . ,mi) will index observation times within the

ith person (i = 1, . . . , n). Let the mi-vector yi denote the response vector, with corresponding

mi × p covariate matrix xi, of which the tth row xt
i is the value of the p covariates at time

t. Let β denote a p-vector representing the parameters of interest. Let µi be the mi-vector

of mean response values for the ith individual, and fix a link function g(·) that relates the

parameters β to the mean (e.g. a log function for count data). In a GEE, estimates β̂ are

obtained by solving the equation

U(β) =
n∑

i=1

DT
i V

−1
i (yi − µi) = 0

where Di = ∂µi/∂β and Vi is the (analyst-specified) working correlation structure. Empir-
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ical, or “robust”, standard errors are then used to ensure correct estimation of the standard

errors even when the working correlation structure is not of the correct form (though effi-

ciency is compromised by a badly mis-specified working correlation). GEE mean and vari-

ance parameter estimators are consistent for the true values provided that the mean model

is correctly specified [4].

The GEE framework is semi-parametric, in that a likelihood or error distribution need

not be specified for estimation or inference. The quasi-likelihood was proposed [5] to provide

many of the convenient features of a likelihood. Inspired by Akaike’s information criterion,

the quasi-likelihood information criterion, QICP , for generalized estimating equations [6] was

next proposed. The QICP uses the observed quasi-likelihood, penalized for complexity, as

a method for choosing between competing models, thus balancing model fit and parsimony.

The optimal variance-covariance matrix is that which gives the smallest quasi-likelihood

information criterion. Several variations on QICP have been proposed, including:

• QICHH : an alternative formulation that evaluates the quasi-likelihood at mean model

parameter estimates generated under the independence working correlation [1];

• CIC: the correlation information criterion [2], which is simply one half of the penalty

of QICP with no adjustment for the value of the quasi-likelihood;

• T2HH : like the CIC, it is one half of the penalty of QICHH [1];

• DBC: the determinant-based criterion [3], which is based on a bias-corrected robust

covariance estimator.

Simulation study

It is sometimes the case that the parameters of the data-generating model are not of primary
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interest. For example, in a setting where prior history may affect a patient’s outcome, but

a physician only has access to current health, the cross-sectional model parameters are of

greater scientific relevance. It has long been known in the statistical literature that GEEs

will yield biased estimates of cross-sectional model parameters when the true data-generating

mechanism relies on additional covariate history – including previous outcome measures –

unless an independence correlation structure is assumed [7].

We assess the performance of the five information criteria to yield unbiased mean pa-

rameter estimators following selection of a working correlation structure. We consider three

data-generating processes:

Model A

Yit = αYi(t−1) + βXit + εit, t = 1, . . . , ni,

where Yi0 = 0, (Xit, εit) have mean zero and are mutually independent of each other

and of Yi(t−1).

Model B

Yit = βXit(αYi(t−1)) + εit, t = 1, . . . , ni,

where α = 1/β, Yi0 = 1/α, and (Xit, εit) are independent of each other and Yi(t−1). Xit

has mean one and εit has mean zero.

Model C

Yit = ηi + βXit + εit, t = 1, . . . , ni,

where ηi and (Xit, εit) are mutually independent, each with mean zero.

For Models A and B, the true data-generating mechanism relies on covariate history and so
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unbiased estimation is only assured through the use of an independence working correlation

structure, whereas in Model C the true outcome model is cross-sectional. Models A and B do

not yield named or recognizable correlation structures, whereas the true correlation structure

from Model C is exchangeable (also called compound symmetric, i.e. all off-diagonal elements

share the same correlation).

Data are generated 1,000 times for n = 30 and 60 individuals, each with mi = 5 and 10

observations. The selection criteria are used to choose between three different structures: an

independence structure, an exchangeable structure, and a first-order autoregressive structure.

As anticipated [7], only the independence working correlation structure yields unbiased

estimates for Models A and B. For model C, estimates are unbiased for all working corre-

lation matrices, but efficiency is gained when the true (exchangeable) correlation structure

is used (eTable 1). If, rather than fixing the working correlation structure, model selec-

tion is undertaken using one of the criteria described above, bias is substantial for all but

QICHH (eTable 2) due to the frequent selection of a working correlation structure other

than independence (eFigure 1).
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eTable 1. Mean and and standard deviation of β̂ for fixed working correlation

Number of Cluster Fixed Correlation Model A Model B Model C
Clusters, n Size Structure

I 0.500 (0.095) 0.495 (0.535) 0.503 (0.118)
30 5 Exch 0.457 (0.086) 0.324 (0.409) 0.504 (0.094)

AR(1) 0.420 (0.079) 0.314 (0.339) 0.504 (0.105)
I 0.500 (0.068) 0.516 (1.483) 0.500 (0.083)

30 10 Exch 0.473 (0.065) 0.324 (1.005) 0.501 (0.062)
AR(1) 0.408 (0.054) 0.314 (0.807) 0.500 (0.072)

I 0.498 (0.068) 0.487 (0.366) 0.499 (0.085)
60 5 Exch 0.451 (0.060) 0.319 (0.286) 0.499 (0.063)

AR(1) 0.414 (0.055) 0.309 (0.237) 0.499 (0.071)
I 0.500 (0.048) 0.496 (1.115) 0.502 (0.058)

60 10 Exch 0.472 (0.044) 0.304 (0.778) 0.501 (0.042)
AR(1) 0.406 (0.038) 0.292 (0.662) 0.501 (0.050)
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eFigure 1. Frequency of working correlation matrix selected for the marginal model by
QICP , QICHH , CIC, T2HH and DBC from 1000 simulated datasets for 30 (top row) and 60
(bottom row) clusters.
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eTable 2. Mean and standard deviation of β̂ when selection criteria are used to choose
between Independence, Exchangeable, and AR(1) working correlation structures. The true
value of β is 0.5.

Number of Cluster Selection Model A Model B Model C
clusters size criteria

QICP 0.472 (0.100) 0.329 (0.361) 0.504 (0.107)
QICHH 0.483 (0.099) 0.490 (0.534) 0.503 (0.116)

30 5 CIC 0.429 (0.085) 0.324 (0.357) 0.505 (0.098)
T2HH 0.428 (0.084) 0.320 (0.352) 0.505 (0.097)
DBC 0.436 (0.083) 0.327 (0.374) 0.504 (0.094)

QICP 0.482 (0.076) 0.312 (0.940) 0.501 (0.073)
QICHH 0.491 (0.073) 0.497 (1.557) 0.500 (0.079)

30 10 CIC 0.415 (0.061) 0.311 (0.940) 0.501 (0.065)
T2HH 0.413 (0.060) 0.310 (0.937) 0.501 (0.065)
DBC 0.436 (0.065) 0.339 (0.922) 0.501 (0.062)

QICP 0.480 (0.076) 0.319 (0.249) 0.499 (0.073)
QICHH 0.490 (0.073) 0.484 (0.365) 0.498 (0.082)

60 5 CIC 0.417 (0.057) 0.315 (0.247) 0.499 (0.064)
T2HH 0.416 (0.057) 0.314 (0.248) 0.499 (0.064)
DBC 0.430 (0.060) 0.322 (0.267) 0.499 (0.063)

QICP 0.491 (0.052) 0.288 (0.709) 0.501 (0.048)
QICHH 0.496 (0.049) 0.495 (1.115) 0.501 (0.055)

60 10 CIC 0.408 (0.040) 0.287 (0.709) 0.501 (0.043)
T2HH 0.408 (0.039) 0.285 (0.708) 0.501 (0.043)
DBC 0.432 (0.050) 0.310 (0.740) 0.501 (0.042)
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